帳號:guest(18.191.87.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):戴文華
作者(外文):Dai, Wen-Hua
論文名稱(中文):激發表面電漿子之探討: 透過四波混頻之數值分析及雙傳輸線的遠場激發與量測
論文名稱(外文):Investigation on The Generation of Surface Plasmon Polaritons: Numerical Analysis via Four-Wave Mixing and Far-field Optical Measurement of Two-wire Transmission Line
指導教授(中文):黃承彬
指導教授(外文):Huang, Chen-Bin
口試委員(中文):黃哲勳
李柏璁
口試委員(外文):Huang, Jer-Shing
Lee, Po-Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066533
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:47
中文關鍵詞:電漿子四波混頻電漿奈米電路電漿模態轉換
外文關鍵詞:Plasmonicfour-wave mixingplasmonic nanocircuitplasmonic mode converter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:319
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本論文利用有限差分時域法在金的表面中,藉由四波混頻的效應來激發表面電漿子,並且找出產生表面電漿子的最佳入射角度。另外,我們也探討雙線傳輸線結構中的表面電漿子現象,並且設計兩傳輸線的長度差來使得表面電漿子模態在此結構中可進行轉換。
在樣品的製作上,我們使用聚焦離子束的方法將其結構刻在微小金片上,而在實驗的部分則是利用自行搭設的共聚焦顯微鏡系統來進行量測,將入射光源聚焦在雙線傳輸線上的端點上並且利用CCD來觀察激發亮點的位置,最後我們從實驗中可以觀察到不同模態的激發亮點有不同的激發位置,而模態轉換器的結構中也可以看到橫向電波模態(TE)與橫向磁波模態(TM)互相轉換的情形。
In this work, we excite SPP by four-wave mixing (FWM) and find the optimum angle of incidence using finite-difference time domain method. Besides, we propose and design mode converters in a plasmonic nanocircuit by controlling the phase of surface plasmon polaritons on two-wire transmission lines (TWTLs) with the length difference between the two wires.
Our samples are fabricated by focused ion beam milling of a gold flake deposited on a cover glass. In the experimental process, we use our home-made confocal microscope focusing the spot at the end of TWTL and CCD camera is used to observe the emission spot. Finally, we can observe the excitation spots are sufficiently displaced from the mode detector. The mode conversion transforms successfully between transverse electric(TE) mode and transverse magnetic(TM) mode by the length difference between the two wires.
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VI
表目錄 VII
第一章 序言 1
第二章 非線性表面電漿子理論及模擬分析 3
2.1 金屬於光頻率下的行為 4
2.2 非線性光學 6
2.3 非線性極化率 9
2.4 表面電漿子 11
2.5 金屬表面之四波混頻 14
2.6 四波混頻之數值模擬 18
第三章 雙線傳輸線遠場實驗量測 24
3.1 雙線傳輸線的模型介紹 25
3.2 雙線傳輸線的理論分析 27
3.3 遠場顯微鏡的實驗架構 30
3.4 實驗量測結果 34
第四章 結論與未來展望 43
參考文獻 45
1. R.W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," in Philosophical Magazine 4, p. 396-402(1902).
2. U. Fano," Some theoretical considerations on anomalous diffraction grating," Physical Review,. 50(6): p. 573-573.(1936)
3. U. Fano," On the anomalous diffraction gratings II," Physical Review, 51(4): p. 288-288.(1937)
4. U. Fano," On the theory of the intensity anomalies of diffraction," Annalen Der Physik, 32(5): p. 393-443.(1938)
5. U. Fano," The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, 31(3): p. 213-222.(1941)
6. R.H. Ritchie," PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS," Physical Review, 106(5): p. 874-881.(1957)
7. H.A. Atwater," The promise of plasmonics," Scientific American, 296(4): p. 56-63.(2007)
8. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters 81 (2002).
9. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma," Nonresonant enhancement of spontaneous emission in metal-dielectric-metal
plasmon waveguide structures,"PHYSICAL REVIEW B 78, 153111.(2008)
10. By Wenshan Cai , Wonseok Shin , Shanhui Fan , and Mark L. Brongersma," Elements for Plasmonic Nanocircuits with Three-Dimensional Slot Waveguides,"Adv. Mater. 22, 5120–5124.(2010)
11. Zeyu Pan, Junpeng Guo, Richard Soref, Walter Buchwald, and Greg Sun," Mode properties of flat-top silver nanoridge surface plasmon waveguides,",J. Opt. Soc. Am. B , 29(3).(2012)
12. G. Volpe, R. Quidant, G. Badenes and D. Petrov, "Surface plasmon radiation forces," Physical Review Letters, 96(23).( 2006)
13. Righini, Maurizio, Volpe Giovanni, Girard Christian, Petrov Dmitri and Quidant Romain, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Physical Review Letters, 100(18).( 2008)
14. Mathieu L Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, 5(6): p. 349-356.(2011)
15. Lina Huang and O.J.F. Martin, "Reversal of the optical force in a plasmonic trap," Optics Letters, 33(24): p. 3001-3003.(2008)
16. Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R. & van Hulst, N. F. “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930-933, (2010).
17. Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Mullen, K. & Moerner, W. E. “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654-657, (2009).
18. Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. “Nano-optics of surface
plasmon polaritons. ” Phys. Rep. 408, 131–314 (2005).
19. Novotny, L. & van Hulst, N. “Antennas for light. ” Nature Photon. 5, 83–90 (2011).
20. Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. “Enhanced nonlinear optical conversion from a periodically nanostructured metal film. ” Opt. Lett. 28, 423–425 (2003).
21. Zhang, Y., Grady, N. K., Ayala-Orozco, C. & Halas, N. J. “Three-dimensional nanostructures as highly efficient generators of second harmonic light. ” Nano Lett. 11, 5519–5523 (2011).
22. Cai, W., Vasudev, A. P. & Brongersma, M. L. “ Electrically controlled nonlinear generation of light with plasmonics. ” Science 333, 1720–1723 (2011).
23. Pu, Y., Grange, R., Hsieh, C-L. & Psaltis, D. “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. ” Phys. Rev. Lett. 104, 207402 (2010).
24. Hanke, T. et al. “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. ” Nano Lett. 12, 992–996 (2012).
25. Park, I-Y. et al. “Plasmonic generation of ultrashort extreme-ultraviolet light pulses. ”Nature Photon. 5, 677–681 (2011).
26. Kim, S. et al. “ High-harmonic generation by resonant plasmon field
enhancement. ” Nature 453, 757–760 (2008).
27. Kohlgraf-Owens, D. C. & Kik, P. G. Numerical study of surface plasmon enhanced nonlinear absorption and refraction. Opt. Express 16, 16823–16834 (2008).
28. Abb, M., Albella, P., Aizpurua, J. & Muskens, O. L. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett. 11, 2457–2463 (2011).
29. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, M. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).
30. Krasavin, A. V. et al. Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Opt. Express 19, 25222–25229 (2011).
31. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).
32. Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotech. 6, 107–111 (2011).
33. Davoyan, A. R., Shadrirov, I. V. & Kivshar, Yu. S. Self-focusing and spatial plasmon-polariton solitons. Opt. Express 17, 21732–21737 (2009).
34. Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008).
35. 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊二十八卷二期 P472-485. 民國89年10月
36. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009).
37. A. T. Georges, J. ,“Theory of nonlinear excitation of surface plasmon
polaritons by four-wave mixing,”Opt. Soc. Am. B 28, 1603-1606 (2011).
38. Yun-Ting Hung, Chen-Bin Huang, and Jer-Shing Huang, “Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction,” Opt. Express 20, 20342-20355,(2012)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *