|
1. R.W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," in Philosophical Magazine 4, p. 396-402(1902). 2. U. Fano," Some theoretical considerations on anomalous diffraction grating," Physical Review,. 50(6): p. 573-573.(1936) 3. U. Fano," On the anomalous diffraction gratings II," Physical Review, 51(4): p. 288-288.(1937) 4. U. Fano," On the theory of the intensity anomalies of diffraction," Annalen Der Physik, 32(5): p. 393-443.(1938) 5. U. Fano," The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, 31(3): p. 213-222.(1941) 6. R.H. Ritchie," PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS," Physical Review, 106(5): p. 874-881.(1957) 7. H.A. Atwater," The promise of plasmonics," Scientific American, 296(4): p. 56-63.(2007) 8. S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters 81 (2002). 9. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma," Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,"PHYSICAL REVIEW B 78, 153111.(2008) 10. By Wenshan Cai , Wonseok Shin , Shanhui Fan , and Mark L. Brongersma," Elements for Plasmonic Nanocircuits with Three-Dimensional Slot Waveguides,"Adv. Mater. 22, 5120–5124.(2010) 11. Zeyu Pan, Junpeng Guo, Richard Soref, Walter Buchwald, and Greg Sun," Mode properties of flat-top silver nanoridge surface plasmon waveguides,",J. Opt. Soc. Am. B , 29(3).(2012) 12. G. Volpe, R. Quidant, G. Badenes and D. Petrov, "Surface plasmon radiation forces," Physical Review Letters, 96(23).( 2006) 13. Righini, Maurizio, Volpe Giovanni, Girard Christian, Petrov Dmitri and Quidant Romain, "Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range," Physical Review Letters, 100(18).( 2008) 14. Mathieu L Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, 5(6): p. 349-356.(2011) 15. Lina Huang and O.J.F. Martin, "Reversal of the optical force in a plasmonic trap," Optics Letters, 33(24): p. 3001-3003.(2008) 16. Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R. & van Hulst, N. F. “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930-933, (2010). 17. Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Mullen, K. & Moerner, W. E. “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654-657, (2009). 18. Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. “Nano-optics of surface plasmon polaritons. ” Phys. Rep. 408, 131–314 (2005). 19. Novotny, L. & van Hulst, N. “Antennas for light. ” Nature Photon. 5, 83–90 (2011). 20. Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. “Enhanced nonlinear optical conversion from a periodically nanostructured metal film. ” Opt. Lett. 28, 423–425 (2003). 21. Zhang, Y., Grady, N. K., Ayala-Orozco, C. & Halas, N. J. “Three-dimensional nanostructures as highly efficient generators of second harmonic light. ” Nano Lett. 11, 5519–5523 (2011). 22. Cai, W., Vasudev, A. P. & Brongersma, M. L. “ Electrically controlled nonlinear generation of light with plasmonics. ” Science 333, 1720–1723 (2011). 23. Pu, Y., Grange, R., Hsieh, C-L. & Psaltis, D. “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. ” Phys. Rev. Lett. 104, 207402 (2010). 24. Hanke, T. et al. “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. ” Nano Lett. 12, 992–996 (2012). 25. Park, I-Y. et al. “Plasmonic generation of ultrashort extreme-ultraviolet light pulses. ”Nature Photon. 5, 677–681 (2011). 26. Kim, S. et al. “ High-harmonic generation by resonant plasmon field enhancement. ” Nature 453, 757–760 (2008). 27. Kohlgraf-Owens, D. C. & Kik, P. G. Numerical study of surface plasmon enhanced nonlinear absorption and refraction. Opt. Express 16, 16823–16834 (2008). 28. Abb, M., Albella, P., Aizpurua, J. & Muskens, O. L. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett. 11, 2457–2463 (2011). 29. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, M. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009). 30. Krasavin, A. V. et al. Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Opt. Express 19, 25222–25229 (2011). 31. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011). 32. Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotech. 6, 107–111 (2011). 33. Davoyan, A. R., Shadrirov, I. V. & Kivshar, Yu. S. Self-focusing and spatial plasmon-polariton solitons. Opt. Express 17, 21732–21737 (2009). 34. Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008). 35. 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊二十八卷二期 P472-485. 民國89年10月 36. J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, “Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing,” Phys. Rev. Lett. 103, 266802 (2009). 37. A. T. Georges, J. ,“Theory of nonlinear excitation of surface plasmon polaritons by four-wave mixing,”Opt. Soc. Am. B 28, 1603-1606 (2011). 38. Yun-Ting Hung, Chen-Bin Huang, and Jer-Shing Huang, “Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction,” Opt. Express 20, 20342-20355,(2012)
|