帳號:guest(3.128.199.6)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃羨文
作者(外文):Huang, Hsien Wen
論文名稱(中文):隨機雷射於DNA奈米複合材料之研究
指導教授(中文):洪毓玨
口試委員(中文):黃勝廣
金雅琴
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066530
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:71
中文關鍵詞:隨機雷射去氧核糖核酸金奈米粒子
相關次數:
  • 推薦推薦:0
  • 點閱點閱:941
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
去氧核糖核酸(deoxyribonucleic acid, DNA)擁有其特殊雙股螺旋結構和材料特性,近年來廣泛應用於光電領域。本研究中,將探討金奈米粒子鑲嵌於DNA生物高分子之DNA奈米複合材料,並將其應用於隨機雷射(random lasers)中。
本論文之首要工作為合成金奈米粒子及製備DNA奈米複合材料。將合成不同尺寸之金奈米粒子,並探討其光學特性及型態鑑定。接著,此金奈米粒子與DNA奈米複合材料進一步被應用於光電元件上。
第二部分主要研究將雷射染料Rh6G(rhodamine 6G)作為增益介質混入DNA奈米複合材料主體中,探討其隨機雷射特性。同時,探討摻雜不同尺寸、濃度的金奈米粒子及摻雜不同之染料濃度,觀察各參數變因對隨機雷射的影響。最後,將研究隨機雷射於DNA複合材料與目前常見的高分子主體材料做比較,例如:聚乙烯醇(polyvinyl alcohol, PVA)及聚甲基丙烯酸甲酯(polymethymethacrylate, PMMA)。研究指出添加尺寸較大之金奈米粒子於DNA複合材料,隨機雷射系統具有較低的門檻值(threshold),此機制與金奈米粒子的散射截面積及表面電漿共振的光學特性有關。
Deoxyribonucleic acid(DNA)has a unique helix structure showing interesting material properties, and has been implemented in optoelectronics in recent years. In this study, DNA nanocomposite consisting of gold nanoparticles dispersed in DNA biopolymer matrix was investigated and was employed for the applications in random lasers.
In the first part of this work, the synthesis of gold nanoparticles and the fabrication of DNA nanocomposite were presented. Gold nanoparticles with various sizes were fabricated and its optical properties and shapes were studied. Such gold nanoparticles and DNA nanocomposite can be further applied to optoelectronics devices. In the second part of this work, random lasing emission in DNA nanocomposite was presented, where DNA nanocomposite was used as host material and Rh6G laser dye as gain medium. We investigated the random lasing emission with different sizes of gold nanoparticles, concentrations of gold nanoparticles and concentrations of Rh6G dye. Finally, the random lasing performance using DNA biopolymer as a host was compared to other host materials, such as PVA and PMMA. The experiment results suggest that larger size of gold nanoparticles in DNA nanocomposite material leads to lower threshold, which is related to the scattering cross section of gold nanoparticles and optics characteristics of surface plasmon resonance(SPR).
摘要 II
Abstract III
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論與文獻回顧 1
1.1 雷射發展與介紹 1
1.1.1 雷射的理論與機制 1
1.1.2 隨機雷射的理論與機制 5
1.1.3 隨機雷射的種類與特性 7
1.2 DNA分子材料發展與介紹 9
1.2.1 DNA分子簡介 9
1.2.2 DNA材料的發展與應用 10
1.3 金屬奈米粒子的介紹 13
1.3.1 金屬奈米粒子簡介 13
1.3.2 金屬奈米粒子的製備與光學特性 13
1.4 研究動機 18
第二章 實驗方法與量測 19
2.1 DNA分子材料製備 19
2.1.1 DNA配置 19
2.1.2 DNA改質 20
2.2 金奈米粒子之合成 21
2.3 DNA奈米複合材料製備 24
2.4 隨機雷射測量系統 25
2.5 量測儀器介紹 28
第三章 實驗結果與討論 30
3.1 金奈米粒子特性分析 30
3.1.1 金奈米粒子之光學特性 30
3.1.2 金奈米粒子之型態鑑定 32
3.1.3 金奈米粒子之總結討論 36
3.2 DNA奈米複合材料的量測與分析 37
3.2.1 光學與型態量測分析 37
3.2.2 染料摻於複合材料量測分析 38
3.3 隨機雷射的量測與分析 41
3.3.1 模擬金奈米粒子之散射截面積 41
3.3.2 隨機雷射訊號隨不同金奈米粒子尺寸之變化 43
3.3.3 隨機雷射訊號隨不同金奈米粒子濃度之變化 48
3.3.4 隨機雷射訊號隨不同染料濃度之變化 52
3.3.5 隨機雷射訊號於不同高分子材料之比較 57
3.3.6 隨機雷射訊號於螢光生命期之量測分析 61
3.3.7 實驗結果與討論 63
第四章 結論與未來展望 65
參考文獻 66
[1] G. R. Gordon, “The LASER, light amplification by stimulated emission of radiation,” In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June, p. 128 (1959).
[2] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187 (4736), 493-494 (1960).
[3] M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photon. 5, 406-410 (2011).
[4] V. S. Letokhov, “Generation of light a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835-840 (1968).
[5] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436-438 (1994).
[6] H. Cao, Y. G. Zhao, and S. T. Ho, et sl., “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278-2281 (1999).
[7] P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492-1505 (1958).
[8] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in adisordered medium,” Nature 390, 671-673 (1997).
[9] P. Sheng, “Introduction to wave scattering, localization and mesoscopic phenomena,” Academic Press (1995).
[10] H. Cao, “Waves in random media,” Taylor & Francis 13, R1-R39 (2003).
[11] M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photon. 7, 197-204 (2013).
[12] H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlasers made of disordered media,” Appl. Phys. Lett. 76, 2997 (2000).
[13] C. Vanneste, P. Sebban, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 143902 (2007).
[14] R. F. Weaver, “Molecular biology” WCB/McGraw-Hill, 263-632 (1999).
[15] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids,” Nature 171, 737-738 (1953).
[16] T. B. Singh, N. S. Sariciftci, and J. G. Grote, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189-212 (2010).
[17] X. D. Liu, H. Y. Diaob, and N. Nishic, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37, 2745-2757 (2008).
[18] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12, 1281-1283 (2000).
[19] A. J. Steckl, “DNA-a new material for photonics,” Nat. Photon. 1, 3-5 (2007).
[20] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006).
[21] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer-Brezina, D. Bauerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8, 648-654 (2007).
[22] G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, “Microwave dielectric properties of DNA based polymers between 10 and 30 GHz,” IEEE Microw. Wirel. Compon. Lett. 15, 232-234 (2005).
[23] Y. C. Hung, W. T. Hsu, T. Y. Lin, and L. Fruk, “Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite,” Appl. Phys. Lett. 99, 253301 (2011).
[24] Y. Ner, J. G. Grote, J. A. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye-doped DNA nanofibers,” Soft Matter 4, 1448-1453 (2008).
[25] A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118 (2007).
[26] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K. Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584-8591 (2004).
[27] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Potoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507-1513 (2007).
[28] Y. C. Hung, C. H. Su, and H. W. Huang, “Low threshold amplified spontaneous emssion from dye-doped DNA biopolymer,” J. Appl. Phys. 111, 113107 (2012).
[29] F. Mafune ́, J. Kohno, Y. Takeda, and T. Kondow, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111-9117 (2000).
[30] J. S. Bradley, “The chemistry of transition metal colloids,” Wiley-VCH, 459-544 (1994).
[31] F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissciation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050-9056 (2001).
[32] L. Polavarapu and Q. H. Xu, “Water-soluble conjugatedn polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608-10611 (2008).
[33] R. L. Wu, C. H. Kuo, and M. H. Huang, “Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures,” Langmuir 26(14), 12307-12313 (2010).
[34] K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, “Facile photochemical synthesis of unprotected aqueous gold nanoparticles,” J. Am. Chem. Soc. 128, 15980-15981 (2006).
[35] M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters,” J. Am. Chem. Soc. 116, 7401 (1994).
[36] U. Kreibig and M. Vollmer, “Optical properties of metal cluster,” Springer (1995).
[37] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[38] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496-501 (2007).
[39] T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
[40] M. A. Hayat, “Colloidal gold: principles, methods, and applications,” Academic Press (1991).
[41] N. G. Bastus, J. Conmenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200nm: size focusing versus ostwald ripening,” Langmuir 27, 11098-11105 (2011).
[42] R. F. Kubin and A. N. Fletcher, “Flourescence quantum yields of some rhodamine dyes,” J. Lumin. 27, 455-462 (1982).
[43] R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold nanoparticles: past, present, and future,” Langmuir 25(24), 13840-13851 (2009).
[44] L. D. Feldheim and C. A. Foss, “Metal nanoparticles: synthesis, characterization, and applications,” CRC Press (2002).
[45] G. Mie, “Contribution to the optical properties of turbid media, especially of colloidal solutions of metals,” Annalen der Physik 25, 377-391, 443-445 (1908).
[46] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238-7248 (2006).
[47] O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[48] V. Myroshnychenko, J. Rodrı ́guez-Fernandez, I. Pastoriza-Santos, A. M. Funston,
C. Novo, P. Mulvaney, L. M. Liz-Marza ́n, and F. J. Garcı ́a de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792-1805 (2008).
[49] H. C. van de Hulst, “Light scattering by small particles,” Dover Press (1957).
[50] R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005).
[51] S. Ku ̈hn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[52] G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett 86, 131105 (2005).
[53] V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. 109, 23125-23128 (2005).
[54] K. Yamashita, T. Kuro, and K. Oe, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
[55] J. Sansregret, J. M. Drake, W. R. L. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22(4), 573-577 (1983).
[56] B. Nithyaja, H. Misha, P. Radhakrishnan, and V. P. N. Nampoori, “Effect of deoxyribonucleic acid on nonlinear optical properties of Rhodamine 6G-polyvinyl alcohol solution,” J. Appl. Phys. 109, 023110 (2011).
[57] A. N. Fletcher, “Laser dye stability,” Appl. Phys. B 31, 19-26 (1983).
[58] P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in rhodamine 6G,” J. Phys. 28, 59 (1987).
[59] T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano. Lett. 11, 4295-4298 (2011).
[60] P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673-673 (1979).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *