|
[1] G. R. Gordon, “The LASER, light amplification by stimulated emission of radiation,” In Franken, P.A. and Sands, R.H. (Eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June, p. 128 (1959). [2] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187 (4736), 493-494 (1960). [3] M. C. Gather and S. H. Yun, “Single-cell biological lasers,” Nat. Photon. 5, 406-410 (2011). [4] V. S. Letokhov, “Generation of light a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835-840 (1968). [5] N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436-438 (1994). [6] H. Cao, Y. G. Zhao, and S. T. Ho, et sl., “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278-2281 (1999). [7] P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492-1505 (1958). [8] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in adisordered medium,” Nature 390, 671-673 (1997). [9] P. Sheng, “Introduction to wave scattering, localization and mesoscopic phenomena,” Academic Press (1995). [10] H. Cao, “Waves in random media,” Taylor & Francis 13, R1-R39 (2003). [11] M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photon. 7, 197-204 (2013). [12] H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlasers made of disordered media,” Appl. Phys. Lett. 76, 2997 (2000). [13] C. Vanneste, P. Sebban, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98, 143902 (2007). [14] R. F. Weaver, “Molecular biology” WCB/McGraw-Hill, 263-632 (1999). [15] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids,” Nature 171, 737-738 (1953). [16] T. B. Singh, N. S. Sariciftci, and J. G. Grote, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189-212 (2010). [17] X. D. Liu, H. Y. Diaob, and N. Nishic, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37, 2745-2757 (2008). [18] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified spontaneous emission from fluorescent-dye-doped DNA-surfactant complex films,” Adv. Mater. 12, 1281-1283 (2000). [19] A. J. Steckl, “DNA-a new material for photonics,” Nat. Photon. 1, 3-5 (2007). [20] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109 (2006). [21] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer-Brezina, D. Bauerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8, 648-654 (2007). [22] G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, “Microwave dielectric properties of DNA based polymers between 10 and 30 GHz,” IEEE Microw. Wirel. Compon. Lett. 15, 232-234 (2005). [23] Y. C. Hung, W. T. Hsu, T. Y. Lin, and L. Fruk, “Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite,” Appl. Phys. Lett. 99, 253301 (2011). [24] Y. Ner, J. G. Grote, J. A. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye-doped DNA nanofibers,” Soft Matter 4, 1448-1453 (2008). [25] A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118 (2007). [26] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K. Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108(25), 8584-8591 (2004). [27] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Potoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46(9), 1507-1513 (2007). [28] Y. C. Hung, C. H. Su, and H. W. Huang, “Low threshold amplified spontaneous emssion from dye-doped DNA biopolymer,” J. Appl. Phys. 111, 113107 (2012). [29] F. Mafune ́, J. Kohno, Y. Takeda, and T. Kondow, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111-9117 (2000). [30] J. S. Bradley, “The chemistry of transition metal colloids,” Wiley-VCH, 459-544 (1994). [31] F. Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, “Dissciation and aggregation of gold nanoparticles under laser irradiation,” J. Phys. Chem. B 105, 9050-9056 (2001). [32] L. Polavarapu and Q. H. Xu, “Water-soluble conjugatedn polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608-10611 (2008). [33] R. L. Wu, C. H. Kuo, and M. H. Huang, “Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures,” Langmuir 26(14), 12307-12313 (2010). [34] K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, “Facile photochemical synthesis of unprotected aqueous gold nanoparticles,” J. Am. Chem. Soc. 128, 15980-15981 (2006). [35] M. T. Reetz and W. Helbig, “Size-selective synthesis of nanostructured transition metal clusters,” J. Am. Chem. Soc. 116, 7401 (1994). [36] U. Kreibig and M. Vollmer, “Optical properties of metal cluster,” Springer (1995). [37] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003). [38] F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496-501 (2007). [39] T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007). [40] M. A. Hayat, “Colloidal gold: principles, methods, and applications,” Academic Press (1991). [41] N. G. Bastus, J. Conmenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200nm: size focusing versus ostwald ripening,” Langmuir 27, 11098-11105 (2011). [42] R. F. Kubin and A. N. Fletcher, “Flourescence quantum yields of some rhodamine dyes,” J. Lumin. 27, 455-462 (1982). [43] R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold nanoparticles: past, present, and future,” Langmuir 25(24), 13840-13851 (2009). [44] L. D. Feldheim and C. A. Foss, “Metal nanoparticles: synthesis, characterization, and applications,” CRC Press (2002). [45] G. Mie, “Contribution to the optical properties of turbid media, especially of colloidal solutions of metals,” Annalen der Physik 25, 377-391, 443-445 (1908). [46] P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238-7248 (2006). [47] O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006). [48] V. Myroshnychenko, J. Rodrı ́guez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marza ́n, and F. J. Garcı ́a de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792-1805 (2008). [49] H. C. van de Hulst, “Light scattering by small particles,” Dover Press (1957). [50] R. C. Polson and Z. V. Vardeny, “Organic random lasers in the weak-scattering regime,” Phys. Rev. B 71, 045205 (2005). [51] S. Ku ̈hn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006). [52] G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett 86, 131105 (2005). [53] V. Amendola, G. A. Rizzi, S. Polizzi, and M. Meneghetti, “Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption,” J. Phys. Chem. 109, 23125-23128 (2005). [54] K. Yamashita, T. Kuro, and K. Oe, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006). [55] J. Sansregret, J. M. Drake, W. R. L. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22(4), 573-577 (1983). [56] B. Nithyaja, H. Misha, P. Radhakrishnan, and V. P. N. Nampoori, “Effect of deoxyribonucleic acid on nonlinear optical properties of Rhodamine 6G-polyvinyl alcohol solution,” J. Appl. Phys. 109, 023110 (2011). [57] A. N. Fletcher, “Laser dye stability,” Appl. Phys. B 31, 19-26 (1983). [58] P. Venkateswarlu, M. C. George, Y. V. Rao, H. Jagannath, G. Chakrapani, and A. Miahnahri, “Transient excited singlet state absorption in rhodamine 6G,” J. Phys. 28, 59 (1987). [59] T. Zhai, X. Zhang, Z. Pang, X. Su, H. Liu, S. Feng, and L. Wang, “Random laser based on waveguided plasmonic gain channels,” Nano. Lett. 11, 4295-4298 (2011). [60] P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, “Scaling theory of localization: absence of quantum diffusion in two dimensions,” Phys. Rev. Lett. 42, 673-673 (1979).
|