帳號:guest(18.224.59.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉勇呈
作者(外文):Liu, Yong-Cheng
論文名稱(中文):矽晶太陽能電池之研究:以濕蝕刻法製作背面含氧化鋁局部鈍化層
論文名稱(外文):Study of Crystalline Silicon Solar Cell:Rear Local Contact with Al2O3 Passivation Layer by Wet Etching
指導教授(中文):王立康
口試委員(中文):王立康
張正陽
巫勇賢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066526
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:62
中文關鍵詞:太陽能電池PERL氧化鋁鈍化
相關次數:
  • 推薦推薦:0
  • 點閱點閱:153
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
本研究嘗試以濕蝕刻法製作背面局部鈍化(PERL)矽晶太陽能電池片,希望能夠以印刷抗蝕刻膠搭配濕蝕刻方式取代雷射開孔。首先設計了一個使用全印刷式的製程流程來達成這個結構,並討論少數載子壽命優化原子層化學氣相沉積Al2O3層退火溫度和時間,以量子效率檢視正背面的鈍化效果,藉由此結構方法,成功製作了背面氧化鋁局部鈍化太陽能電池,並將效率提升約0.4%。最後以C-V量測方式觀察氧化鋁層的負電荷變化及計算其密度,也確定了適當的退火方式對於負電荷的增加,使場效應鈍化更加明顯。
目錄
致謝 I
摘要 III
圖目錄 VII
表目錄 X
第1章 序論 1
1.1 前言 1
1.2 高效率太陽能電池發展 2
1.3 文獻 5
1.4 研究構想 6
1.5 論文大綱 7
第2章 基本原理 8
2.1 太陽能電池發電原理 8
2.2 基本半導體原理 9
2.3 基本p-n接面原理 10
2.4 太陽能電池照光特性 12
2.5 載子復合 13
2.6 太陽能電池等效電路 15
2.7 太陽能電池參數 17
2.8 原子層化學氣相沉積之氧化鋁沉積原理 21
2.9 氧化鋁的場效應鈍化原理 22
2.10 C-V量測氧化層固定電荷原理 24
第3章 實驗方法與製程流程 29
3.1 實驗概述 29
3.2 前置製程與清洗 29
3.3 參考片製作流程 31
3.4 背面局部鈍化結構片製程 33
3.5 MIS電容器製作 40
第4章 結果與討論 42
4.1 氧化鋁退火的少子壽命討論 42
4.2 各製程步驟少子壽命量測 43
4.3 不同退火條件下的少子壽命量測及討論 45
4.4 FTIR矽氫鍵量測 48
4.5 SEM背部局部鈍化觀察 49
4.6 I-V曲線效率量測 51
4.7 量子效率量測 52
4.8 氧化層電荷量測 54
第5章 結論 57
參考文獻 59
參考文獻
[1] 黃惠良、曾百亨, 太陽電池, 五南出版社, 2008.
[2] 翁敏航, 太陽能電池-原理、元件、材料、製程與檢測, 東華書局, 2010.
[3] William Sockly, Hans J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J.Appl. Phys., vol.32, pp. 510-519, 1961.
[4] S.R. Wenham, C.13. Honsberg, S. Edmiston, L. Koschier, A. Fung and M.A. Green, “Simplified buried contact solar cell process,” 25th PVSC, 1996.
[5] Christiana B. Honsberg, Member, IEEE, Jeffrey E. Cotter, Keith R. McIntosh, Stephen C. Pritchard,Bryce S. Richards, and Stuart R. Wenham, Senior Member, IEEE, “Design strategies for commercial solar using the buried contact technology,” IEEE Transactons on Electron Devices, Vol. 46, 1999.
[6] Kyeong-Yeon Cho, II-Hwan Kim, Dong-Joon Oh, Ji-Myung, Shim, Eun-Joo, Lee, “Improvements of Voc by selective emitter pattern optimization in screen printed crystalline Si solar cells,” Photovoltaic Specialists Conference (PVSC), pp.1335-1338, 2010.
[7] U. Besi-Vetrella, L. Pirozzi, E. Salza,G. Ginocchietti, F. Ferrazza,L. Ventura, A. Slaoui, J.C. Muller, “Large area, screen printed silicon solar cells with selective emitter made by laser overdoping and RTA spin-on glasses.,” 26th PVSC, 1997.
[8] I. Leea,D.G. Lim,S.H. Lee,J. Yi, “The effects of a double layer anti-reflection coating for a buried contact solar cell application,” Surface and Coatings Technology, pp. 86–91, 2001.
[9] Makoto Tanaka, Shingo Okamoto , Sadaji Tsuge, Seiichi Kiyama, “Development of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules,” 3rd World Conference on Photovoltaic Energv Conversion, 2003.
[10] “Twenty-two percent efficiency HIT solar cell,” Solar Energy Materials & Solar Cells, Vol 93, pp. 670–673, 2009.
[11] Takahiro Mishima, Mikio Taguchi, Hitoshi Sakata, Eiji Maruyama, “Development status of high-efficiency HIT solar cells,” Solar Energy Materials & Solar Cells, Vol 95, pp. 18–21, 2011.
[12] Chun Gong, Sukhvinder Singh, Jo Robbelein, Niels Posthuma, Emmanuel Van Kerschaver, Jef Poortmans and Robert Mertens, “High efficient n-type back-junction back-contact silicon solar cells with screen-printed al-alloyed emitter and effective emitter passivation study,” Progress in Photovoltaics: Research and Applications, Vol 19, pp. 781–786, 2011.
[13] R. Woehl, J. Krause, F. Granek, and D. Biro, “19.7% Efficient All-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter,” IEEE Electron Device Letters, Vol. 32, 2011.
[14] Michael D. Lammert, Richard J. Schwartz, “The interdigitated back contact solar cell: a silicon solar cell for use in concentrated Sunlight,” IEEE Transactons on Electron Devices, Vol 24, pp. 337–342, 1977.
[15] Jianhua Zhao, Aihua Wang, Martin A. Green, “High-effeciency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials & Solar Cells, Vol 65, pp. 429–435, 2011.
[16] J. Zhao, “Recent advances of high-efficiency single crystalline silicon solar cells in processing technologies and substrate materials,” Solar Energy Materials & Solar Cells, Vol 82, pp. 53–64, 2004.
[17] T.F. Ciszek, T.H. Wang, “Silicon defect and impurity studies using float-zone crystal growth as a tool,” Journal of Crystal Growth, Vol 237–239, pp. 1685–1691, 2002.
[18] 林堅楊、林坤立, “單晶矽太陽能電池製程及頻譜響應之研究,” 於 國立雲林科技大學電子工程研究所.
[19] Armin G.Aberle, “Surface Passivation of Crystalline Silicon Solar Cells:A Review,” Progress in Photovoltaics: Research and Applications, Vol 8, pp. 473–487, 2000.
[20] “http://www.alexandrite.net/chapters/chapter7/methods-of-producing-synthetic-alexandrite.html,” [線上].
[21] Jung M. Kim and Young K. Kim, “Saw-damage-induced structural defects on the surface of silicon crystals,” Journal of The Electrochemical Society, vol 152, pp. G189-G192, 2005.
[22] Oliver Schultz, Ansgar Mette, Martin Hermle, Stefan W. Glunz, “Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology,” Progress in Photovoltaics: Research and Applications, Vol 16, pp. 317–324, 2008.
[23] z. Shi, S. Wenham and J. Ji, “Mass production of the innovative PLUTO solar cell technology,” Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, pp. 001922 - 001926, 2009.
[24] J.-F. Lelie`vre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, M. Lemiti, “Study of the composition of hydrogenated silicon nitride SiN xsurface and bulk passivation of silicon,” Solar Energy Materials & Solar Cells, Vol 93, pp. 1281–1289, 2009.
[25] F. Duerinckx, J. Szlufcik, “Defect passivation of industrial multicrystalline solar cells basedon PECVD silicon nitride,” Solar Energy Materials and Solar Cells, Vol 72, pp. 231–246, 2002.
[26] M. Hofmann,C. Schmidt, N. Kohn, J. Rentsch, S. W. Glunz, R. Preu, “Stack system of PECVD amorphous silicon and PECVD silicon oxide for silicon solar cell rear side passivation,” Progress in Photovoltaics: Research and Applications, Vol 16, pp. 509–518, 2008.
[27] Martin Schaper, Jan Schmidt, Heiko Plagwitz, Rolf Brendel, “20.1%-efficient crystalline silicon solar cell with amorphous silicon rear-surface passivation,” Progress in Photovoltaics: Research and Applications, Vol 13, pp. 381–386, 2005.
[28] G. Agostinellia, Corresponding author contact information, E-mail the corresponding author, A. Delabiea, P. Vitanov, Z. Alexieva, H.F.W. Dekkers, S. De Wolf, G. Beaucarne, G. Beaucarne, “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge,” Solar Energy Materials and Solar Cells, Vol 90, pp. 3438–3443, 2006.
[29] Florian Werner, Boris Veith, Dimitri Zielke, Lisa Kühnemund, Christoph Tegenkamp, Michael Seibt, Rolf Brendel, Jan Schmidt, “Electronic and chemical properties of the c-Si/Al2O3 interface,” Journal of Applied Physics, Vol 109, pp. 113701, 2011.
[30] Jan Benick, Bram Hoex, M. C. M. van de Sanden, W. M. M. Kessels, Oliver Schultz, and Stefan W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron emitters,” Applied Physics Letters, Vol 92, pp. 253504, 2008.
[31] J. Schmidt1, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Progress in Photovoltaics: Research and Applications, Vol 16, pp. 461–466, 2008.
[32] Bart Vermang, Hans Goverde, Loic Tous, Anne Lorenz, Patrick Choulat, Jorg Horzel, Joachim John, Jef Poortmans, Robert Mertens, “Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%,” Progress in Photovoltaics: Research and Applications, Vol 20, pp. 269–273, 2012.
[33] Bart Vermang, Hans Goverde, Loic Tous, Anne Lorenz, Patrick Choulat, Jorg Horzel, Joachim John, Jef Poortmans, Robert Mertens, “Approach for Al2O3 rear surface passivation of industrial p-type Si PERC above 19%,” Progress in Photovoltaics: Research and Applications, Vol 20, pp. 269–273, 2012.
[34] Pierre Saint-Casta, Daniel Kania, René Heller, Saskia Kuehnhold, Marc Hofmann, Jochen Rentsch, Ralf Preu, “High-temperature stability of c-Si surface passivation by thick PECVD Al2O3 with and without hydrogenated capping layers,” Applied Surface Science, Vol 258, pp. 8371–8376, 2011.
[35] “http://en.wikipedia.org/wiki/P%E2%80%93n_junction,” [線上].
[36] Jan Schmidt, Florian Werner, Boris Veith, Dimitri Zielke, Robert Bock, Veronica Tiba, Paul Poodt, Fred Roozeboom ,Andrew Li, Andres Cuevas, Rolf Brendel, “Industrially relevant Al2O3 deposition techniques for the surface passivation of Si solar cells,” 25th European Photovoltaic Solar Energy Conference, 2010.
[37] B. Hoex, J. J. H. Gielis, M. C. M. van de Sanden, W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-chargedielectric Al2O3,” Journal of Applied Physics, Vol 104, pp. 113703, 2008.
[38] 吳坤憲, “簡介半導體材料與元件之電性量測,” [線上]. Available: http://www.slidefinder.net/-/-----/2010_5_e811bdfe/19789682/p2.
[39] Casey, H.C. ,Fountain, G.G. , Alley, R.G. , Keller, B.P. , DenBaars, Steven P., “Low interface trap density for remote plasma deposited SiO2 on n‐type GaN,” Applied Physics Letters, Vol 68 , pp. 1850 - 1852, 1996.
[40] 吳皇都, “利用網印及化學蝕刻方式製作射極鈍化背面局部擴散之單晶矽太陽能電池研究,” 於 國立清華大學碩士論文, 2012.
[41] A. Rothschild1, S. Nishibe, J. Cui, N. Zhu, M. Debucquoy, S. Mamagkakis, V. Nagaswami and J. John, “Al2O3 Surface passivation: electrical characterization using the quantox tool,” Photovoltaic Specialists Conference (PVSC), pp. 001508 - 001511, 2011.
[42] M. Z. Burrowsa, U. K. Das, R. L. Opila, R. W. Birkmire, “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation,” Journal of Vacuum Science & Technology, Vol 26 , pp. 683 - 687, 2008.

(此全文限內部瀏覽)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *