帳號:guest(18.118.151.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳弘文
論文名稱(中文):頻譜可調摻鉺光纖鎖模雷射
論文名稱(外文):Mode-locked erbium-doped fiber laser with tunable intracavity spectral modulation
指導教授(中文):楊尚達
口試委員(中文):賴暎杰
陳明彰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066518
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:31
中文關鍵詞:超快光學飛秒光纖鎖模雷射非線性光學
相關次數:
  • 推薦推薦:0
  • 點閱點閱:507
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光纖鎖模雷射具有許多優點因此近年來受到廣泛的發展。自相似雷射以及全正色散光纖雷射所使用的新鎖模機制使得輸出脈衝能量與一般被動鎖模飛秒光纖雷射相比提升了十倍以上。在本論文中,我們展示了一組中心波長位於1.55微米且共振腔內具有強正色散的摻鉺光纖共振器。在共振腔內我們導入了一組傅立葉轉換脈衝塑形器使得雷射的頻寬與中心波長具有大幅的可調性。由脈衝塑形器提供的額外群延遲色散有效地提升脈衝能量以及降低輸出脈衝的非線性啁啾。輸出脈衝能量在無碎波狀態下能藉由額外的群延遲色散由4.3奈焦耳提升至8.9奈焦耳,並只受限於可得的最大幫浦功率(320毫瓦)。脈衝寬度與脈衝序列的穩定性藉由脈衝強度自相關量測、頻率解析光柵量測、示波器脈衝軌跡與無線電頻率頻譜量測來進行分析。此外,超連續光源頻譜介於1200奈米至2400奈米之間可以由一段15公尺的高度非線性光纖產生。
Mode-locked fiber lasers have been extensively explored in recent years because of a variety of practical advantages. The new mode-locking mechanisms of self-similar and all normal dispersion fiber lasers increase the output pulse energy by more than one order of magnitude for the passively mode-locked femtosecond fiber lasers. In this thesis, we demonstrate an erbium-doped fiber oscillator with predominant normal group delay cavity dispersion (GDD) at 1.55 wavelength. A Fourier transform pulse shaper built into the cavity enables the central wavelength and bandwidth of the fiber oscillator to be widely tunable. An extra GDD introduced by the shaper effectively increases the pulse energy and reduces the nonlinear chirp of the output mode-locked pulse. The wave-breaking-free output pulse energy can be increased from 4.3 nJ to 8.9 nJ by adding an extra GDD of 0.178 ps2, limited by the available pump power of 320 mW. The pulse width and stability of the pulse train were thoroughly characterized by intensity autocorrelation, frequency-resolved optical gating, oscilloscope trace, and radio-frequency spectral analysis. Besides, supercontinuum generation from 1200 nm to 2400 nm was generated by a 15-m-long highly nonlinear fiber.
ABSTRACT
CHAPTER 1 INTRODUCTION
CHAPTER 2 THEORY
2.1 Different types of mode-locked fiber lasers
2.2 Intracavity spectral amplitude modulation
2.3 Intracavity spectral phase modulation
CHAPTER 3 EXPERIMENT
3.1 Experimental setup
3.2 Characterization of laser parameters
3.3 Wavelength and bandwidth tuning
by intracavity spectral amplitude modulation
3.4 Energy enhancement
by intracavity spectral phase modulation
3.5 Pulse compression efficiency improvement
by intracavity spectral phase modulation
3.6 Supercontinuum generation
CHAPTER 4 CONCLUSION AND PERSPECTIVE
REFERENCES
REFERENCES
[1] K. Yamakawa and C. P. J. Barty, "Ultrafast, Ultrahigh-Peak, and High-Average Power Ti:Sapphire Laser System and Its Applications," IEEE Journal of Selected Topics in Quantum Electronics, 6, 658-675 (2000).
[2] D. H. Sutter, I. D. Jung, F. X. Kartner, N. Matuschek, F. Morier-Genoud, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, " Self-Starting 6.5-fs Pulses from a Ti:Sapphire Laser Using a Semiconductor Saturable Absorber and Double-Chirped Mirrors," IEEE Journal of Selected Topics in Quantum Electronics, 4, 169-178 (1998).
[3] V. Fomin, M. Abramov, A. Ferin, A. Abramov, D. Mochalov, N. Platonov, and V. Gapontsev, "10 kW single mode fiber laser," in Proc. of 5th International Symposium on High-Power Fiber Lasers and Their Applications, St. Petersburg, Russia, Jun. 28- Jul. 1, 2010, Session HPFL-1.3.
[4] J. An, D. Kim, J. Dawson, M. J. Messerly and P. J. Barty, "Grating-less, fiber-based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs," Optics Letters, 32, 2010-2012 (2007).
[5] H. G. Liu, J. H. Huang, J. H. Li, W. Weng, H. Zheng, Y. Ge, S. T. Dai, F. Shi, "Above 100 nJ all-normal-dispersion femtosecond pulse generation from a large-core multi-mode fiber laser," Laser Physics Letters, 10, 055101 (2013).
[6] A. M. Weiner, Ultrafast Optics (Wiley, 2009).
[7] F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser & Photonics Reviews, 2, 58–73 (2008).
[8] E. P. Ippen, H. A. Haus, and L. Y. Liu, "Additive pulse mode locking," Journal of the Optical Society of America B, 6, 1736-1745 (1989).
[9] J. Wang, "Theory of passive additive-pulse mode locking," Optics Letters, 16, 1104-1106 (1991).
[10] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Optics Letters, 18, 1080-1082 (1993).
[11] L. E. Nelson, S. B. Fleischer, G. Lenz, and E. P. Ippen, "Efficient frequency doubling of a femtosecond fiber laser," Optics Letters, 21, 1759-1761 (1996).
[12] V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Physical Review Letters, 84, 6010-6013 (2000).
[13] F. ¨O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, " Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, 92, 213902 (2004).
[14] F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Optics Express, 11, 3550-3554 (2003).
[15] D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," Journal of the Optical Society of America B, 10, 1185-1190 (1993).
[16] W. J. Thomlinson, R. H. Stolen and A. M. Johnson, "Optical wave breaking of pulses in nonlinear optical fibers," Optics Letters, 10, 457–459 (1985).
[17] A. Chong, J. Buckley, W. Renninger and F. Wise, " All-normal-dispersion femtosecond fiber laser," Optics Express, 14, 10095-10100 (2006).
[18] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, " Ytterbium-Doped Fiber Amplifiers," IEEE Journal of Quantum Electronics, 33, 1049-1056 (1997).
[19] J. Buckley, A. Chong, S. Zhou, W. Renninger, F. W. Wise, " Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter," Journal of the Optical Society of America B, 24, 1803-1806 (2007).
[20] A. Ruehl, V. Kuhn, D. Wandt and D. Kracht, "Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ," Optics Express, 16, 3130-3135 (2008).
[21] X. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, "Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion," Optics Express, 17, 8506-8512 (2009).
[22] M. J. Messerly, J. W. Dawson, J. An, D. Kim, and C. P. J. Barty, "25 nJ Passively Mode-Locked Fiber Laser at 1080 nm," in Conference On Lasers and Electro-Optics, 2006 OSA Technical Digest Series (Optical Society of America, 2006), paper CThC7.
[23] G. Chang, A. Galvanauskas, H. G. Winful, and T. B. Norris, "Dependence of parabolic pulse amplification on stimulated Raman scattering and gain bandwidth," Optics Letters, 29, 2647-2649 (2004).
[24] D. B. S. Soh, J. Nilsson and A. B. Grudinin, "Efficient femtosecond pulse generation using a parabolic amplifier combined with a pulse compressor. II. Finite gain-bandwidth effect," Journal of the Optical Society of America B, 23, 10-19 (2006).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *