帳號:guest(3.141.30.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):戴鈞凱
作者(外文):Tai, Chun-Kai
論文名稱(中文):以DNA為模板之光還原金奈米粒子的表面增強拉曼散射感測器
論文名稱(外文):Surface-Enhanced Raman Scattering Sensors with Photoinduced DNA-templated Gold Nanoparticles
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):金雅琴
黃勝廣
口試委員(外文):King, Ya-Chin
Hwang, Sheng-Kwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066514
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:78
中文關鍵詞:表面增強拉曼散射DNA光還原
外文關鍵詞:Surface-Enhanced Raman ScatteringDNAPhotoinduced
相關次數:
  • 推薦推薦:0
  • 點閱點閱:227
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本研究中,我們利用表面增強拉曼散射( surface-enhanced Raman scattering, SERS )應用於生醫感測的特性,搭配奈米科技領域中使用範圍極廣的生物有機高分子DNA 材料,製作出高靈敏度的SERS 基板,並應用於生物鹼coralyne 與DNA 雜交的生物檢測。
我們將DNA 材料經活性改質後,溶於有機溶液中,利用其特殊雙股螺旋結構,配合弱感光劑Iragacure-2959 與簡單的光還原法,合成出表面高粗糙度的花狀金奈米粒子。藉由改變DNA、金鹽類與光感劑的莫耳數比,調控金奈米粒子的形貌與尺寸。接著利用製作出的金奈米粒子,與簡單的casting 方式,製作SERS 基板後進行靈敏度檢測,對於GM19 與DTNB 兩種待測分子,對於最低濃度可量測兩者皆為10-9 M,SERS 訊號增強幅度( enhancement factor )則分別可達4.4×105 與2.6×106。
我們並將此 SERS 基板應用於感測器,檢測抗癌物質coralyne與DNA 雜交前後的SERS 光譜差異。藉由螢光光譜得知DNA 與coralyne 的最佳結合比例,並透過SERS 檢測中強度比值( I736/I1318 )推算出溶液內,單股與雙股DNA 的比例,驗證coralyne 含量的多寡。
In this work, we used the bio-organic polymer material full name (DNA), which has been widely employed in nanotechnology, in surface-enhanced Raman scattering (SERS) for biomedical sensing. A SERS substrate is presented to be used in sensing the interaction of alkaloid coralyne and DNA hybridization.
We use the modified double helix DNA and weak photoreducing agent, Iragacure-2959, to synthesize rough surface flower-like gold nanostructures by photoreduction. By controlling the molar ratio of DNA, gold salt precursor and photoreducing agent, various morphologies and size of gold nanostructures can be obtained. We demonstrate the application of gold nanostructures as SERS substrate. The lowest detectable concentration of analytes, GM19 and DTNB is 10-9 M and the enhancement factor is 4.4×105 and 2.6×106, respectively.
We apply this SERS substrate for sensors to detect the interaction of alkaloid coralyne and DNA. We determined the best combination ratio of coralyne and DNA by fluorescence spectroscopy. In addition, we also use the SERS intensity ratio (I736/I1318), which indicates the single-stranded and double-stranded DNA ratio, to verify coralyne concentration.

摘要 II
Abstract III
致謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 文獻回顧與介紹 1
1.1 拉曼散射 1
1.1.1 一般拉曼散射基本原理 1
1.1.2 表面增強拉曼散射效應 (SERS) 5
1.1.2.1 電磁效應 5
1.1.2.2 化學效應 6
1.1.3 SERS應用於感測器 7
1.2 金屬奈米粒子 9
1.2.1 金屬奈米粒子特性 9
1.2.2 金屬奈米粒子簡介 10
1.2.3 以DNA模板合成特殊形貌金屬奈米粒子 16
1.3 研究動機 19
第二章 實驗製備與量測 20
2.1 DNA材料製備 20
2.1.1 DNA配置 20
2.1.2 DNA-CTMA合成 24
2.2 光合成金奈米粒子製備 24
2.3 SERS基板製備 26
2.4 量測儀器介紹 29
2.5 藥品及實驗器材 31
第三章 結果與討論 32
3.1 簡介金奈米粒子 32
3.1.1 金奈米粒子生長機制 32
3.1.2 金奈米粒子光譜檢測與形貌分析 34
3.2 金奈米粒子最佳條件優化 36
3.2.1 DNA片段長度對金奈米粒子製備的影響 36
3.2.2 DNA片段分布對金奈米粒子製備的影響 39
3.2.3 DNA-CTMA濃度調控金奈米粒子形貌 40
3.3 表面增強拉曼散測量測分析 44
3.3.1 不同形貌金奈米粒子對SERS影響 44
3.3.2 不同SERS基板製備探討 46
3.3.3 花狀金奈米粒子濃度分析 51
3.3.4 精胺對於SERS的影響 53
3.3.5 SERS基板靈敏度檢測 56
3.4 利用SERS檢測DNA與coralyne雜交效果 62
第四章 結論與未來展望 71
參考文獻 73
[1] C. Raman and K. Krishnan, "Polarisation of scattered light-quanta", Nature, vol. 122, p. 169, 1928.
[2] M. Fleischmann, P. Hendra, and A. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode", Chem. Phys. Lett., vol. 26, pp. 163-166, 1974.
[3] S. Bioletti, R. Leahy, J. Fields, B. Meehan, and W. Blau, "The examination of the Book of Kells using micro‐Raman spectroscopy", J. Raman Spectrosc, vol. 40, pp. 1043-1049, 2009.
[4] K. Chen, M. Leona, K.-C. Vo-Dinh, F. Yan, M. Wabuyele, and T. Vo-Dinh, "Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art", Optics East 2005, 2005, pp. 59930M-59930M-12.
[5] K. L. Wustholz, C. L. Brosseau, F. Casadio, and R. P. Van Duyne, "Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists’ canvas", PCCP, vol. 11, pp. 7350-7359, 2009.
[6] 石紘碩, "The Study of Stokes/anti-Stokes Raman Spectra", 碩士論文, 逢甲大學, 2010.
[7] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment", J. Phys. Chem. B, vol. 107, pp. 668-677, 2003.
[8] 余隆佑, " Surface-enhanced Raman Scattering Biosensors with Plasmonic Structures", 碩士論文, 成功大學, 2007.
[9] D. A. Long, "Raman spectroscopy", McGraw-Hill New York, 1977.
[10] T. Vo-Dinh, H. N. Wang, and J. Scaffidi, "Plasmonic nanoprobes for SERS biosensing and bioimaging", J Biophotonics, vol. 3, pp. 89-102, Jan 2010.
[11] X. M. Qian and S. M. Nie, "Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications", Chem Soc Rev, vol. 37, pp. 912-20, May 2008.
[12] 莊萬發, "超微粒子理論應用", 復漢, 1995.
[13] N. Hajduková, M. Procházka, J. Štěpánek, and M. Špírková, "Chemically reduced and laser-ablated gold nanoparticles immobilized to silanized glass plates: Preparation, characterization and SERS spectral testing, "Colloid Surf. A-Physicochem. Eng. Asp.", vol. 301, pp. 264-270, 2007.
[14] M. T. Reetz, M. Winter, R. Breinbauer, T. Thurn‐Albrecht, and W. Vogel, "Size‐Selective Electrochemical Preparation of Surfactant‐Stabilized Pd‐, Ni‐and Pt/Pd Colloids", Chem. Eur. J., vol. 7, pp. 1084-1094, 2001.
[15] N. A. Dhas and A. Gedanken, "Sonochemical synthesis of molybdenum oxide-and molybdenum carbide-silica nanocomposites", Chem. Mater", vol. 9, pp. 3144-3154, 1997.
[16] M. Siek, A. Kaminska, A. Kelm, T. Rolinski, R. Holyst, M. Opallo, et al., "Electrodeposition for preparation of efficient surface-enhanced Raman scattering-active silver nanoparticle substrates for neurotransmitter detection", Electrochim. Acta, vol. 89, pp. 284-291, 2013.
[17] M. Hyun, S. Choi, Y. W. Lee, S. H. Kwon, S. W. Han, and J. Kim, "Simple Electrodeposition of Dendritic Au Rods from Sulfite-Based Au(I) Electrolytes with High Electrocatalytic and SERS Activities", Electroanalysis, vol. 23, pp. 2030-2035, 2011.
[18] K. L. McGilvray, M. R. Decan, D. Wang, and J. C. Scaiano, "Facile photochemical synthesis of unprotected aqueous gold nanoparticles", J. Am. Chem. Soc , vol. 128, pp. 15980-15981, 2006.
[19] Y. Chen, C. Wang, Z. Ma, and Z. Su, "Controllable colours and shapes of silver nanostructures based on pH: application to surface-enhanced Raman scattering", Nanotechnology, vol. 18, p. 325602, 2007.
[20] B. Nikoobakht and M. A. El-Sayed, "Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method", Chem. Mater., vol. 15, pp. 1957-1962, 2003.
[21] S. Barbosa, A. Agrawal, L. Rodriguez-Lorenzo, I. Pastoriza-Santos, R. A. Alvarez-Puebla, A. Kornowski, et al., "Tuning size and sensing properties in colloidal gold nanostars", Langmuir, vol. 26, pp. 14943-50, Sep 21 2010.
[22] J. Chen, B. Shen, G. Qin, X. Hu, L. Qian, Z. Wang, et al., "Fabrication of Large-Area, High-Enhancement SERS Substrates with Tunable Interparticle Spacing and Application in Identifying Microorganisms at the Single Cell Level", J. Phys. Chem. C, vol. 116, pp. 3320-3328, 2012.
[23] A. Sabur, M. Havel, and Y. Gogotsi, "SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles", J. Raman Spectrosc, vol. 39, pp. 61-67, 2008.
[24] J. H. Hong, Y. K. Hwang, J. Y. Hong, H. J. Kim, S. J. Kim, Y. S. Won, et al., "Facile preparation of SERS-active nanogap-rich Au nanoleaves", Chem. Commun., vol. 47, pp. 6963-5, Jun 28 2011.
[25] Z. Wang, M. S. Bharathi, R. Hariharaputran, H. Xing, L. Tang, J. Li, et al., "pH-Dependent Evolution of Five-Star Gold Nanostructures: An Experimental and Computational Study", ACS nano, vol. 7, pp. 2258-2265, 2013.
[26] J. Richter, "Metallization of DNA", PHYSICA E, vol. 16, pp. 157-173, 2003.
[27] J. T. Petty, J. Zheng, N. V. Hud, and R. M. Dickson, "DNA-templated Ag nanocluster formation", J. Am. Chem. Soc., vol. 126, pp. 5207-5212, 2004.
[28] J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, et al., "Nanoscale Palladium Metallization of DNA*", Nanoscale, vol. 94, p. 8720, 2000.
[29] L. b. Yang, G. y. Chen, J. Wang, T. t. Wang, M. q. Li, and J. h. Liu, "Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection", J. Mater. Chem., vol. 19, p. 6849, 2009.
[30] H. Ma, D. Lin, H. Liu, L. Yang, L. Zhang, and J. Liu, "Hot spots in photoreduced Au nanoparticles on DNA scaffolds potent for robust and high-sensitive surface-enhanced Raman scattering substrates", Mater. Chem. Phys., vol. 138, pp. 573-580, 2013.
[31] O. Peron, E. Rinnert, M. Lehaitre, P. Crassous, and C. Compere, "Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS)", Talanta, vol. 79, pp. 199-204, Jul 15 2009.
[32] S. Li, L. Liu, H. Tian, and J. Hu, "Gold nanoparticles-attached ion implanted silicon substrate: Preparation, characterization, and application in SERS", Vacuum, vol. 89, pp. 174-178, 2013.
[33] J. M. Obliosca, P. C. Wang, and F. G. Tseng, "Probing quenched dye fluorescence of Cy3-DNA-Au-nanoparticle hybrid conjugates using solution and array platforms", J. Colloid Interface Sci., vol. 371, pp. 34-41, Apr 1 2012.
[34] Y. Wang, L. Zhu, Y. Zhang, and M. Yang, "Silicon nanotips formed by self-assembled Au nanoparticle mask", J. Nanopart. Res., vol. 12, pp. 1821-1828, 2009.
[35] C. W. Chang, J. D. Liao, H. C. Chang, L. K. Lin, Y. Y. Lin, and C. C. Weng, "Fabrication of nano-indented cavities on Au for the detection of chemically-adsorbed DTNB molecular probes through SERS effect", J. Colloid Interface Sci., vol. 358, pp. 384-91, Jun 15 2011.
[36] L. Polavarapu and Q.-H. Xu, "Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS", Langmuir, vol. 24, pp. 10608-10611, 2008.
[37] C.-Y. Wu, W.-Y. Lo, C.-R. Chiu, and T.-S. Yang, "Surface enhanced Raman spectra of oligonucleotides induced by spermine", J. Raman Spectrosc, vol. 37, pp. 799-807, 2006.
[38] Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, "Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper", J. Colloid Interface Sci., vol. 392, pp. 237-46, Feb 15 2013.
[39] S. Guo and E. Wang, "Wet-chemical approach to three-dimensional gold nanocorallines: synthesis and application in surface-enhanced Raman spectroscopy", J. Colloid Interface Sci., vol. 315, pp. 795-9, Nov 15 2007.
[40] G. H. Jeong, Y. W. Lee, M. Kim, and S. W. Han, "High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties", J. Colloid Interface Sci., vol. 329, pp. 97-102, Jan 1 2009.
[41] E. Brodman and G. S. Cohen, "Communications to the editor", Bull Med Libr Assoc., vol. 54, p. 259, 1966.
[42] J. Ren and J. B. Chaires, "Sequence and structural selectivity of nucleic acid binding ligands", Biochemistry, vol. 38, pp. 16067-16075, 1999.
[43] S. Pal, G. S. Kumar, D. Debnath, and M. Maiti, "Interaction of the antitumour alkaloid coralyne with duplex deoxyribonucleic acid structures: spectroscopic and viscometric studies", Indian J. Biochem Biophys.", vol. 35, p. 321, 1998.
[44] J.-H. Oh, S.-H. Han, H.-G. Park, and J.-S. Lee, "Room-Temperature Colorimetric Detection of Coralyne Using DNA-Functionalized Nanoparticle Probes", Bull. Korean Chem. Soc., vol. 33, pp. 329-332, 2012.
[45] Z. Lv, H. Wei, B. Li, and E. Wang, "Colorimetric recognition of the coralyne-poly(dA) interaction using unmodified gold nanoparticle probes, and further detection of coralyne based upon this recognition system", Analyst, vol. 134, pp. 1647-51, Aug 2009.
[46] Y. Lu and Q. Huang, "Label-free selective detection of coralyne due to aptamer-coralyne interaction using DNA modified SiO2@ Au core/shell nanoparticles as an effective SERS substrate", Anal. Methods, vol. 5, pp. 3927-3932, May 2013.
[47] Y. H. Lin and W. L. Tseng, "Fluorescence detection of coralyne and polyadenylation reaction using an oligonucleotide-based fluorogenic probe", Chem. Commun., vol. 47, pp. 11134-6, Oct 21 2011.
[48] M. Polak and N. V. Hud, "Complete disproportionation of duplex poly (dT)• poly (dA) into triplex poly (dT)• poly (dA)• poly (dT) and poly (dA) by coralyne", Nucleic Acids Res., vol. 30, pp. 983-992, 2002.
[49] S. S. Jain, M. Polak, and N. V. Hud, "Controlling nucleic acid secondary structure by intercalation: effects of DNA strand length on coralyne‐driven duplex disproportionation", Nucleic Acids Res., vol. 31, pp. 4608-4615, 2003.
[50] K. Bhadra, M. Maiti, and G. S. Kumar, "DNA-binding cytotoxic alkaloids: comparative study of the energetics of binding of berberine, palmatine, and coralyne", DNA cell biol., vol. 27, pp. 675-685, 2008.
[51] G. Song, C. Chen, X. Qu, D. Miyoshi, J. Ren, and N. Sugimoto, "Small‐Molecule‐Directed Assembly: A Gold Nanoparticle‐Based Strategy for Screening of Homo‐Adenine DNA Duplex Binders", Adv. Mater., vol. 20, pp. 706-710, 2008.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *