帳號:guest(18.116.51.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳佑瑋
作者(外文):Chen, You-Wei
論文名稱(中文):Applications of Direct Detection OFDM and MC-CDMA in Optical Access Networks
論文名稱(外文):直接接收OFDM與MC-CDMA在光擷取網路之應用
指導教授(中文):馮開明
指導教授(外文):Feng, Kai-Ming
口試委員(中文):賴暎杰
呂海涵
魏嘉建
李明昌
廖顯奎
學位類別:博士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066510
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:128
中文關鍵詞:正交分頻多工被動光學網路偏振態多工雷利散射多載波分碼多址
外文關鍵詞:orthogonal frequency division multiplexing (OFDM)passive optical network (PON)polarization division multiplexing (PDM)Rayleigh backscattering (RB)multicarrier code division multiple access (MC-CDMA)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:458
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
隨著各式網路需求快速的發展,例如高速商業網路、光纖到家或是光纖與無線通訊整合應用,光纖通訊流量需求逐年快速成長。在各種光學擷取網路技術中,因為成本的考量,目前以被動光學網路被最多研究團隊重視與討論。而為了滿足快速成長的網路需求,正交分頻多工技術也開始被考慮為下一世代被動光學網路的調變格式。
為了提升被動光學網路的系統表現,例如傳輸速度、誤碼率或是成本效益等,大多數的研究團隊都專注在中央機房傳輸設計或是用戶端的接收設計。因此,各種光學的調變與接收機制被提出來討論;然而,為了增加系統表現而更改用戶端的設計,往往伴隨著巨大的建置成本。在本論文研究中,我們提出了二個升級模組的概念:第一個是在遠端遙控端,我們透過簡單的被動光學原件,可以達到加倍通道的傳輸量以及用戶數的偏振態解多工模組;另一個是,透過空間路由的方式解決反向散射干擾的升級模組。兩個被提出的架構都不需要更動用戶端的設計,同時可以與分波多工系統相容;也因此可以提供系統供應商一個可以依照其市場需求的升級方案。
最後一個研究計畫是能均一化用戶下傳表現的強度調變系統。由於雙邊帶的訊號在傳輸後會受到射頻衰減的問題;不同頻率、不同接收位置的用戶也因此會有不同的訊號表現。然而,這樣不公平的接收表現不利於一般的商業模型。在本論文中,首次提出利用多載波分碼多址的調變格式來使0-100公里中各個使用者能有接近的接收表現。此外多載波分碼多址不僅與正交分頻多工擁有相同的通道容量與頻譜效益,其接收表現還可以透過數位演算法的方式進行進一步的提升,以獲得更好的系統功率預算值。
As the fast soaring of modern applications, e.g. high speed business networks, fiber to the home or fiber-wireless integration, the data rate requirement rapidly increases with the years in optical access networks. Due to its cost-effective nature, passive optical network (PON) attracts lots of attention by researchers. Meanwhile, to meet the future data rate requirement, orthogonal frequency division multiplexing (OFDM) is widely investigated and considering as one of the candidate signal formats for next generation PONs.
To enhance the performance of PON systems, including channel capacity, bit-error rate (BER) performance, and cost-effectiveness or so on, most of researchers focus on the transmitter design in the central office (CO) or the receiver design at optical network units (ONUs). Therefore, lots of modulation formats and/or receiving mechanisms are proposed for future requirements. However, enhancing the performance via modifying ONUs’ design always requires huge capital expenditures (CAPEX). In this dissertation, we propose two upgrade module concepts. First, in the powered remote node (RN), we can double the channel capacity and user numbers by passive optical polarization de-multiplexing implementation. The other one is a back propagation mitigation function by spatial routing. Both of them are highly compatible with existing wavelength division multiplexing (WDM) PON without any modification of ONUs’ design. System vendors can therefore upgrade the system depending on their marketing targets.
In the final chapter, an intensity modulation direct detection (IMDD) system is proposed with uniform downstream receiving performance among subscribers. In general, due to the double side band nature of IM signals, distinct users among different subcarrier in different locations will receive different BER performance caused by radio frequency fading loss. However, it is harmful to ordinary business model. Thus, we propose a multicarrier code division multiple access (MC-CDMA) signal format to uniform BER performance among subscribers ranging from 0 to 100 km. Moreover, the MC-CDMA signals’ performance can be further enhanced by appropriate digital signal processing. Therefore, power budget, which is typically limited by the worst user case, of the proposed MC-CDMA PON is improved with respect to the IMDD OFDM-PON.
List of Contents
Chapter 1. General Introduction 16
1.1 General Introduction of Optical Access Network 16
1.2 Introduction of PONs 18
1.3 Brief Introduction of the Proposed Schemes 20
Chapter 2. Principles 24
2.1 Downstream OFDM Processing 24
2.2 Intensity Modulation 26
2.3 Field Modulation 27
2.4 Reception of Single Band DDO-OFDM 28
2.5 Multiband OFDM Modulation 30
2.6 Multiple Access Technologies 33
2.7 Downstream MC-CDMA Processing 34
Chapter 3. A Carrier Centralized LR-PON with Multiband DDO-OFDM Downstream and Nyquist-QPSK Upstream 38
3.1 Introduction 38
3.2 Experimental Setup 40
3.3. Results 42
Chapter 4. Bi-directional 1 Tb/s DDO-OFDM Downstream and 480 Gb/s Nyquist Upstream WDM LR-PON with Back Propagation Mitigation 47
4.1 Introduction 47
4.2 Operation Principles 49
4.3 Experiment Setups 53
4.4 Experimental Results and Discussions 58
Chapter 5. Self-polarization Diversity PDM Module of DDO-OFDM in LR Optical Access Network 66
5.1 Introduction 66
5.2 Operation Principles 69
5.3 Experimental Setup and Results 73
5.3.1 Experimental Setup of Self-polarization Diversity PDM RoF 73
5.3.2 Experimental Results of Self-polarization Diversity PDM RoF 75
5.3.3 Experimental Setup of SOP Variation 81
5.3.4 Experimental Results of SOP Variation 82
5.3.5 Experimental Setup of Self-polarization Diversity Multiband DDO-OFDM PON 87
5.3.6 Experimental Results of Self-polarization Diversity Multiband DDO-OFDM PON 91
Chapter 6. RF Power Fading Mitigation for an IMDD Multicarrier LR-PON 95
6.1 Introduction 95
6.2 Experiment Setup and Results 99
6.2.1 Experiment Setup of 7.8 GHz Signals over 50-km Transmission 99
6.2.2. Experimental Results of 7.8 GHz Signals over 50-km Transmission 101
6.2.3 Experimental Setups of Users Ranging from BTB to 100 km Transmission with 10GHz Signal Bandwidth 104
6.2.4 Experimental Results of Users Ranging from BTB to 100 km Transmission with 10GHz Signal Bandwidth 105
6.2.5 Experiment Setup of Asynchronous MC-CDMA Upstream 111
6.2.6 Experimental Results of Asynchronous MC-CDMA Upstream 112
Chapter 7. Conclusions 116
7.1 Summary for this Dissertation 116
7.2 A Bi-directional LR-PON with Multiband DDO-OFDM Downstream and Nyquist-QPSK Upstream 116
7.3 A Bi-directional 1 Tb/s DDO-OFDM Downstream and 480 Gb/s Nyquist upstream WDM LR-PON with Back Propagation Mitigation 116
7.4 A Self-polarization Diversity PDM Module for the DDO-OFDM LR Optical Access Network Downstream 117
7.5 A Bi-directional IMDD MC-CDMA LR-PON in a RF Fading Channel 117
References 119
Symbols and Acronyms 124
Publication Lists 128

[1] I. P. Kaminow, T. Li, and A. E. Willner, Optical Fiber Telecommunications VIB, 6th ed. (Academic, 2013), Chap. 22.
[2] J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, “An experimental demonstration for carrier reused bidirectional PON system with adaptive modulation DDO-OFDM downstream and QPSK upstream signals,” Opt. Exp., vol. 21, no. 23, pp. 28154-28166, Nov. 2013.
[3] Y.-W. Chen, J.-H. Yan, K.-P. Huang, and K.-M. Feng, “A Carrier Centralized Hybrid Long Reach PON with DDO-OFDM Downstream and Nyquist-WDM Upstream,” in Proc. CLEO, San Jose, CA, 2014, paper STu1J.3.
[4] Y.-W. Chen, C.-Y. Tseng, S.-J. Liu, and K.-M. Feng, “PDM DDO-OFDM with Self-Polarization Diversity for the Backhaul of Radio-over-Fiber System,” in Proc. OFC, 2016, paper Th4A.2.
[5] Y.-W. Chen, Y.-T. Liao, T.-N. Lai, M.-F. Chang and K.-M. Feng, “Power Budget Enhancement in an IMDD PON Downstream with Multicarrier Code Division Multiple Access,” in Proc. CLEO, San Jose, CA, 2016, paper JTh2A.120.
[6] Y.-W. Chen, J.-H. Yan, Y.-M. Wang, M.-F. Chang, and K.-M. Feng, “Back Propagation Isolation Design in a Carrier Centralization WDM IFoF Fiber-Wireless Convergence,” in Proc. CLEO, San Jose, CA, 2016, paper STh1F.4.
[7] Y.-W. Chen, Y.-T. Liao, and K.-M. Feng, “Experimental demonstration of Asynchronous PON Upstream via Multicarrier Code Division Multiple Access,” in Proc. CLEO, San Jose, CA, 2016, paper SF2F.2.
[8] D.-Z. Hsu, C.-C. Wei, H.-Yu Chen, W.-Y. Li, and J. Chen, “Cost-effective 33-Gbps intensity modulation direct detection multi-band OFDM LR-PON system employing a 10-GHz-based transceiver,” Opt. Exp., vol. 19, no. 18, pp. 17546-17556, Aug. 2011.
[9] K. Kanonakis, I. Tomkos, T. Pfeiffer, J. Prat, and P. Kourtessis, “ACCORDANCE: A Novel OFDMA-PON Paradigm for Ultra-High Capacity Converged Wireline-Wireless Access Networks,” in Proc. ICTON, Munich, 2010, paper Tu.A1.2.
[10] N. Cvijetic, A. Tanaka, P. N. Ji, K. Sethuraman, S. Murakami, and T. Wang, “SDN and OpenFlow for Dynamic Flex-Grid Optical Access and Aggregation Networks,” J. Lightw. Technol., vol. 32, no. 4, pp. 864-870, Feb. 2014.
[11] Y. Takushima, K. Y. Cho, and Y. C. Chung, “Design Issues in RSOA-based WDM PON,” in Proc. IPGC, Singapore, 2008.
[12] G. de Valicourt, D. Maké, J. Landreau, M. Lamponi, G. H. Duan, P. Chanclou, and R. Brenot, “High Gain (30 dB) and High Saturation Power (11 dBm) RSOA Devices as Colorless ONU Sources in Long-Reach Hybrid WDM/TDM-PON Architecture,” IEEE Photon. Technol. Lett., vol. 22, no. 3, pp. 191-193, Feb. 2010.
[13] C. W. Chow, C. H. Yeh, L. Xu, and H. K. Tsang, “Rayleigh Backscattering Mitigation Using Wavelength Splitting for Heterogeneous Optical Wired and Wireless Access,” IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1294-1296, Sep. 2010.
[14] S.-C. Lin, S.-L. Lee, H.-H. Lin, G. Keiser, and R. J. Ram, “Cross-Seeding Schemes for WDM-Based Next-Generation Optical Access Networks,” J. Lightw. Technol., vol. 29, no. 24, pp. 3727-3736, Dec. 2011.
[15] H.-H. Lin, C.-Y. Lee, S.-C. Lin, S.-L. Lee, and G. Keiser, “WDM-PON Systems Using Cross-Remodulation to Double Network Capacity with Reduced Rayleigh Scattering Effects,” in Proc. OFC/NFOEC, San Diego, CA, 2008, paper OTuH6.
[16] Z. Zhou, S. Xiao, T. Qi, P. Li, M. Bi, and W. Hu, “25-GHz-Spaced DWDM-PON With Mitigated Rayleigh Backscattering and Back-Reflection Effects,” IEEE Photon. J., vol. 5, no.4, Aug. 2013.
[17] S. Gosselin, A. Pizzinat, X. Grall, D. Breuer, E. Bogenfeld, S. Krauß, J. Alfonso T. Gijón, A. Hamidian, N. Fonseca, and B. Skubic, “Fixed and Mobile Convergence: Which Role for Optical Networks?,” IEEE J. Opt. Commun. Netw., vol. 7, no. 11, pp. 1075-1083, Nov. 2015.
[18] Y.-W. Chen, J.-H. Yan, Y.-M. Wang, M.-F. Chang, W.-R. Peng, and K.-M. Feng, "Over 210 Gb/s PDM multiband DDO-OFDM LR-PON downstream with simple self-polarization diversity," Opt. Exp., vol. 23, no. 14, pp. 18525-18533, Jul. 2015.
[19] S. M. Zafi, S. Shah, A. W. Umrani, and A. A. Memon, “Performance comparison of OFDM, MC-CDMA and OFCDM for 4G wireless broadband access and beyond,” in Proc. PIERS, 2011, pp. 1396–1399.
[20] Y. Zhou, T.-S. Ng, J. Wang, K. Higuchi and M. Sawahashi, “OFCDM: a promising broadband wireless access technique,” Commun. Mag., vol. 46, no. 3, pp. 38-49, Mar. 2008
[21] R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in proc. ICECE, 2006, pp. 408-411.
[22] J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Exp., vol. 16, no. 2, pp. 860-865, Jan. 2008.
[23] A. Ali, H. Paul, J. Leibrich, W. Rosenkranz, and K.-D. Kammeyer, “Optical Biasing in Direct Detection Optical-OFDM for Improving Receiver Sensitivity,” in Proc. OFC/NFOEC, San Diego, CA, 2010, paper CF1F.5.
[24] J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A Multiband DDO-OFDM System with Spectral Efficient Iterative SSBI Reduction DSP,” IEEE Photon. Technol. Lett., vol. 28, no. 2, pp. 119-122, Oct. 2016.
[25] W.-R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of high-speed (> 100 Gb/s) direct-detection optical OFDM superchannel,” J. Lightw. Technol., vol. 30, no. 12, pp. 2025-2034, 2012.
[26] K. Grobe and J. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag., vol. 46, no. 1, pp. 26-34, Jan. 2008.
[27] N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “Coherent 40Gb/s OFDMA PON for long-reach (100+ km) high-split ratio (>1:64) optical access/metro networks,” in Proc. OFC/NFOEC, Los Angeles, CA, 2012, paper OW4B.8.
[28] N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit Optical Access Networks Based on WDM-OFDMA-PON,” J. Lightw. Technol., vol. 30, no. 4, pp. 493-503, Feb. 2012.
[29] W. Shieh, “PMD-Supported Coherent Optical OFDM Systems,” IEEE Photon. Technol. Lett., vol. 19, no. 3, pp. 134-136, Feb. 2007.
[30] E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” IEEE Photon. J., vol. 2, no. 2, Apr. 2010.
[31] E. Giacoumidis, A. Kavatzikidis, A. Tsokanos, J. M. Tang, and I. Tomkos, “Adaptive Loading Algorithms for IMDD Optical OFDM PON Systems Using Directly Modulated Lasers,” IEEE J. Opt. Commun. Netw., vol. 4, no. 10, pp. 769-778, Oct. 2012.
[32] Z. Dong, X. Li, J. Yu, and N. Chi, “6128-Gb/s Nyquist-WDM PDM-16QAM Generation and Transmission Over 1200-km SMF-28 With SE of 7.47 b/s/Hz,” J. Lightw. Technol., vol. 30, no. 24, pp. 4000-4005, Dec. 2012.
[33] T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Exp., vol. 20, no.14, pp. 15001-15007, Jul. 2012.
[34] Z. Dong, J. Yu, H.-C. Chien, N. Chi, L. Chen, and G.-K. Chang, “Ultra-dense WDM-PON delivering carrier-centralized Nyquist-WDM uplink with digital coherent detection,” Opt. Exp., vol. 19, no. 12, pp. 11100-11105, Jaun. 2011.
[35] P. C. Schindler, R. M. Schmogrow, M. Dreschmann, J. Meyer, D. Hillerkuss, I. Tomkos, J. Prat, H.-G. Krimmel, T. Pfeiffer, P. Kourtessis, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Flexible WDM-PON with Nyquist-FDM and 31.25 Gbit/s per Wavelength Channel Using Colorless, Low-Speed ONUs,” in Proc. OFC, Anaheim, CA, 2013, paper OW1A.5.
[36] K. Kikuchi, “Polarization-demultiplexing algorithm in the digital coherent receiver,” in proc. LEOS, 2008, pp. 101-102.
[37] S. Gosselin, A. Pizzinat, X. Grall, D. Breuer, E. Bogenfeld, J. T. Gijón, A. Hamidian, and N. Fonseca, “Fixed and Mobile Convergence: Which Role for Optical Networks?,” in Proc. OFC, 2015, paper Th3H.2.
[38] C. Liu, A. Yi, M. Zhu, J. Wang, L. Zhang, S.-C. Shin, Z. Dong, H.-C. Chien, J. Yu, C. Su, G. Gu, A. Ng'Oma, G.-K. Chang, “A novel direct-modulation envelope-detection Pol-Mux MIMO RoF system based on blind equalization techniques,” in Proc. OFC/NFOEC, Anaheim, CA, 2013, paper OM3D.6.
[39] M. Zhu, F. Li, F. Lu, J. Yu, C. Su, G. Gu, and G.-K. Chang, “Wavelength Resource Sharing in Bidirectional Optical Mobile Fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 3182-3188, Aug. 2015.
[40] C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Exp., vol. 16, no. 16, pp. 12096-12101, Aug. 2008.
[41] G. P. Agrawal, Nonlinear fiber optics, 5th ed. Oxford, UK, 2013.
[42] L. Mehedy, M. Bakaul, and A. Nirmalathas, “Single-Channel Directly Detected Optical-OFDM Towards Higher Spectral Efficiency and Simplicity in 100 Gb/s Ethernet and Beyond,” IEEE J. Opt. Commun. Netw., vol. 3, no. 5, pp. 426-434, May 2011.
[43] W.-R. Peng, “Analysis of Laser Phase Noise Effect in DirectDetection Optical OFDM Transmission,” J. Lightw. Technol., vol. 28, no. 17, pp. 2526-2536, Sep. 2010.
[44] ITU-T Recommendation G.975.1, Appendix I.9, 2004.
[45] X. Steve Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Exp., vol. 15, no. 12, pp. 7407-7414, Jun. 2007.
[46] C.-C. Wei, C.-T. Lin, C.-Y. Wang, and F.-M. Wu, “A novel polarization division multiplexed OFDM system with a direct-detection BLAST-aided receiver,” in Proc. OFC, 2013, paper. JTh2A.49.
[47] D. Qian, N. Cvijetic, J. Hu, and T. Wang, “108 Gb/s OFDMA-PON With Polarization Multiplexing and Direct Detection,” J. Lightw. Technol., vol. 28, no. 4, pp. 484-493, Feb. 2010.
[48] C. Xie, “PMD Insensitive Direct-Detection Optical OFDM Systems Using Self-Polarization Diversity,” in Proc. OFC, 2008, paper. OMM2.
[49] W.-R. Peng, K.-M. Feng, and A. E. Willner, “Direct-Detected Polarization Division Multiplexed OFDM Systems with Self-Polarization Diversity,” in Proc. LEOS, 2008, paper. MH3.
[50] M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun., vol. 72, no. 6, pp. 341-344, 1989.
[51] P. Drexler and P. Fiala, “Utilization of Faraday mirror in fiber optic current sensors,” Radioengineering, vol. 17, no. 4, pp. 101–107, 2008.
[52] M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, “Experiments on long wavelength (1550nm) "plug and play" quantum cryptography systems,” Opt. Exp., vol. 4, no. 10, pp. 383-387, 1999.
[53] R. E. Wagner, C. D. Poole, H. J. Schulte, N. S. Bergano, V. P. Nathu, J. M. Amon, R. L. Rosenberg, and R. C. Alfmess, “Polarizcrrion Measurements on a 147 km Lightwave Undersea Cable,” in Proc. OFC, 1986, paper PD7-1.
[54] H.-Y. Chen, C.-C. Wei, I-C. Lu, H.-H. Chu, Y.-C. Chen, and J. Chen, “High-Capacity and High-Loss-Budget OFDM Long-Reach PON Without an Optical Amplifier,” IEEE J. Opt. Commun. Netw., vol. 7, no. 1, pp. A59-A65, Jan. 2015.
[55] N. Cvijetic, “OFDM for Next-Generation Optical Access Networks,” J. Lightw. Technol., vol. 30, no. 4, pp. 384-398, Feb. 2012.
[56] N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical access based on optical orthogonal frequency-division multiplexing,” Commun. Mag., vol. 47, no. 7, pp. 70-77, Jul. 2010.
[57] C. W. Chow, C. H. Yeh, and J. Y. Sung, “OFDM RF power-fading circumvention for long-reach WDM-PON,” Opt. Exp., vol. 22, no. 20, pp. 24392-24397, Oct. 2014
[58] T. Minn and K.-Y. Siu, “Dynamic Assignment of Orthogonal Variable-Spreading-Factor Codes in W-CDMA,” J. Sel. Area. Comm., vol. 18, no. 8, pp. 1429-1440, Aug. 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *