帳號:guest(18.221.181.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周桂勗
作者(外文):Chou, Kuei-Hsu 
論文名稱(中文):表面電漿磁光柯爾增強效應用於生物感測晶片
論文名稱(外文):Strong Transverse Magneto-optical Kerr Effect on Surface Plasmonic Grating for Sensitive and Label-free Sensing
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):賴志煌
李國賓
口試委員(外文):Lai, Chih-Huang
Lee, Gwo-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066507
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:78
中文關鍵詞:磁光柯爾效應表面電漿感測器
外文關鍵詞:Magneto-optical Kerr EffectSurface PlasmonSensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們主要研究橫向磁光柯爾效應(TMOKE)在光柵式
Au/Fe/Au 結構的表面電漿增強效應用在非標定、高敏感度的光學生
物量測。藉由材料選擇與結構優化來達到最佳化磁光訊號,之後整合
微流道封裝成面積25´14mm2的元件來做流體量測。我們分析了元件的
磁光特性與生物量測的能力。所量測到的最大磁光訊號約為0.035 並
能觀察到磁光訊號在表面電漿共振波長附近具有相當大的色散特性。
接著透過整合好的磁光感測晶片來量測不同濃度的食鹽水,所量測的
本質解析度與食鹽水(bulk solution)解析度分別約為 10-7 RIU
∼、0.004%(wt)。此外,我們利用高親和力的avidin/bBSA 生物組合動態
(real time)量測avidin 與biotin 之間的交互作用,並驗證表面電漿磁光
訊號具有線性量測與定量分析的特性。量測avidin 的解析度約為
1.5nM。最後,我們所設計的感測晶片可由奈米技術生產並整合微流
道成晶片實驗室(lab-on-chip)作為生物感測器。
In this thesis, a novel transverse magneto-optical Kerr effect (TMOKE) on the
composite surface plasmon grating is proposed and developed to implement a
label-free, high-sensitive optical biosensor. The Au/Fe/Au grating structure is
designed and optimized to achieve maximal Kerr parameter. The device area is 25x14
mm2 and is integrated with a single microfludic channel for delivering liquid for test.
After fabricating the device, we characterize the magneto-optical effect of the
Au/Fe/Au plasmon grating and capabilities of detecting bio-molecules. The measured
maximum of Kerr parameter is about 0.035 and a very dispersive near the SPP
wavelength. Through this integrated magneto-optics device, we have demonstrated
detection of NaCl in salt solution in low concentrations. The calculated detection of
limit is around 10-7 RIU , corresponding to a minimal concentration of 0.004% (wt).
Moreover, we investigate avidin/bBSA binding and show a result of real-time
monitoring of avidin and bBSA interaction. The minimum detectable concentration of
avidin is measured to be around 1.5nM. Our device could be fabricated by a
nanoimprinting technique for mass production and integrated with microfludic
channels for implementing a lab-on-chip system to detect bio-molecules.
第一章 緒論 ........................................................................................... 1
1.1 前言.................................................................................................................. 1
1.2 研究動機.......................................................................................................... 2
1.3 文章架構.......................................................................................................... 4
第二章 理論背景 ................................................................................... 5
2.1 表面電漿原理(Surface Plasmon) .................................................................... 5
2.2 磁光效應原理.................................................................................................. 6
2.3 磁光柯爾效應.................................................................................................. 8
2.4 表面電漿在金屬平面模態............................................................................ 10
2.5 激發表面電漿波............................................................................................ 13
2.6 稜鏡耦合(prism coupling) ............................................................................. 14
2.7 表面電漿磁光效應........................................................................................ 16
2.8 周期性結構表面電漿磁光效應.................................................................... 17
2.9 生物感測器之應用........................................................................................ 20
第三章 實驗模擬與元件設計 ............................................................. 22
3.1 等向性色散曲線............................................................................................ 22
3.2 非等向性色散曲線........................................................................................ 24
3.3 耦合波理論(RCWA) ..................................................................................... 26
3.4 元件最佳化設計............................................................................................ 30
第四章 量測系統與元件製作 ............................................................. 35
4.1 元件製作流程圖............................................................................................ 35
4.2 元件製作流程說明........................................................................................ 37
4.3 微流道製作.................................................................................................... 42
4.4 表面電漿量測系統........................................................................................ 44
4.5 功率放大器與電磁鐵製作............................................................................ 45
第五章 實驗量測與分析 ..................................................................... 46
5.1 磁光訊號量測................................................................................................ 46
5.2 光學系統本質的偵測極限............................................................................ 47
5.3 元件的磁光特性與液體的影響.................................................................... 49
5.4 食鹽水的量測與解析度估計........................................................................ 50
5.5 生物檢體組.................................................................................................... 53
5.6 生物檢體量測方法........................................................................................ 55
5.7 動態生物檢測................................................................................................ 57
5.8 動態生物線性量測........................................................................................ 58
5.9 表面形貌對生物分子位置的影響................................................................ 60
5.10 溫度、電路與玻璃反射光對量測系統的影響.......................................... 61
第六章 結論與改善 ............................................................................. 63
6.1 結論................................................................................................................ 63
6.2 改善................................................................................................................ 63
Appendix A ............................................................................................... 64
Appendix B ............................................................................................... 66
Appendix C ............................................................................................... 67
參考資料 ................................................................................................... 75
1. Wood, R.W., On a remarkable case of uneven distribution of light in a
diffraction grating spectrum. Philosophical Magazine, 1902. 4(19-24): p.
396-402.
2. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary
waves on metallic surfaces (Sommerfeld's waves). Journal of the Optical
Society of America, 1941. 31(3): p. 213-222.
3. Ritchie, R.H., PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS. Physical
Review, 1957. 106(5): p. 874-881.
4. Stern, E.A. and R.A. Ferrell, SURFACE PLASMA OSCILLATIONS OF A
DEGENERATE ELECTRON GAS. Physical Review, 1960. 120(1): p. 130-136.
5. Otto, A., Excitation of nonradiative surface plasma waves in silver by the
method of frustrated total reflection. Zeitschrift für Physik, 1968. 216: p.
398-411.
6. Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics,
1985. 57(3): p. 783-826.
7. Wolfbeis, O.S., Optical Sensor. Springer, 2004.
8. Moerner, W.E., New directions in single-molecule imaging and analysis. Proc.
Natl. Acad. Sci., 2007: p. 12596.
9. Cox, W.G. and V.L. Singer, Fluorescent DNA hybridization probe preparation
using amine modification and reactive dye coupling. Biotechniques, 2004.
36(1): p. 114-+.
10. Homola, J., Present and future of surface plasmon resonance biosensors.
Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
11. Hoa, X.D., A.G. Kirk, and M. Tabrizian, Towards integrated and sensitive
surface plasmon resonance biosensors: A review of recent progress.
Biosensors & Bioelectronics, 2007. 23(2): p. 151-160.
12. Ymeti, A., et al., Realization of a multichannel integrated Young interferometer
chemical sensor. Applied Optics, 2003. 42(28): p. 5649-5660.
13. Schneider, B.H., J.G. Edwards, and N.F. Hartman, Hartman interferometer:
versatile integrated optic sensor for label-free, real-time quantification of
nucleic acids, proteins, and pathogens. Clinical Chemistry, 1997. 43(9): p.
1757-1763.
14. Teraoka, I., S. Arnold, and F. Vollmer, Perturbation approach to resonance
shifts of whispering-gallery modes in a dielectric microsphere as a probe of a
76
surrounding medium. Journal of the Optical Society of America B-Optical
Physics, 2003. 20(9): p. 1937-1946.
15. Noto, M., et al., Molecular weight dependence of a whispering gallery mode
biosensor. Applied Physics Letters, 2005. 87(22).
16. Ksendzov, A. and Y. Lin, Integrated optics ring-resonator sensors for protein
detection. Optics Letters, 2005. 30(24): p. 3344-3346.
17. De Vos, K., et al., Silicon-on-Insulator microring resonator for sensitive and
label-free biosensing. Optics Express, 2007. 15(12): p. 7610-7615.
18. Fan, X., et al., Sensitive optical biosensors for unlabeled targets: A review.
Analytica Chimica Acta, 2008. 620(1-2): p. 8-26.
19. Liedberg, B., C. Nylander, and I. Lundstrom, SURFACE-PLASMON RESONANCE
FOR GAS-DETECTION AND BIOSENSING. Sensors and Actuators, 1983. 4(2): p.
299-304.
20. Jung, L.S., et al., Quantitative interpretation of the response of surface
plasmon resonance sensors to adsorbed films. Langmuir, 1998. 14(19): p.
5636-5648.
21. Singh, B.K. and A.C. Hillier, Surface plasmon resonance imaging of
biomolecular interactions on a grating-based sensor array. Analytical
Chemistry, 2006. 78(6): p. 2009-2018.
22. Stewart, M.E., et al., Quantitative multispectral biosensing and 1D imaging
using quasi-3D plasmonic crystals. Proceedings of the National Academy of
Sciences of the United States of America, 2006. 103(46): p. 17143-17148.
23. Pang, L., et al., Spectral sensitivity of two-dimensional nanohole array surface
plasmon polariton resonance sensor. Applied Physics Letters, 2007. 91(12).
24. Li, Y.-C., et al., Differential-phase surface plasmon resonance biosensor.
Analytical Chemistry, 2008. 80(14): p. 5590-5595.
25. Regatos, D., et al., Au/Fe/Au multilayer transducers for magneto-optic surface
plasmon resonance sensing. Journal of Applied Physics. 108(5).
26. Liu, J.M., photonic Devices. 2005.
27. You, C.Y. and S.C. Shin, Derivation of simplified analytic formulae for
magneto-optical Kerr effects. Applied Physics Letters, 1996. 69(9): p.
1315-1317.
28. 吳民耀、劉威志, 表面電漿子與模擬. 物理雙月刊, 2006. 28(2).
29. Belotelov, V.I., et al., Enhanced magneto-optical effects in magnetoplasmonic
crystals. Nat Nano. 6(6): p. 370-376.
30. Moharam, M.G., et al., FORMULATION FOR STABLE AND EFFICIENT
IMPLEMENTATION OF THE RIGOROUS COUPLED-WAVE ANALYSIS OF BINARY
GRATINGS. Journal of the Optical Society of America a-Optics Image Science
77
and Vision, 1995. 12(5): p. 1068-1076.
31. Li, L.F., Use of Fourier series in the analysis of discontinuous periodic
structures. Journal of the Optical Society of America a-Optics Image Science
and Vision, 1996. 13(9): p. 1870-1876.
32. Lalanne, P. and G.M. Morris, Highly improved convergence of the
coupled-wave method for TM polarization. Journal of the Optical Society of
America a-Optics Image Science and Vision, 1996. 13(4): p. 779-784.
33. Granet, G. and B. Guizal, Efficient implementation of the coupled-wave
method for metallic lamellar gratings in TM polarization. Journal of the
Optical Society of America a-Optics Image Science and Vision, 1996. 13(5): p.
1019-1023.
34. Popov, E. and M. Neviere, Grating theory: new equations in Fourier space
leading to fast converging results for TM polarization. Journal of the Optical
Society of America a-Optics Image Science and Vision, 2000. 17(10): p.
1773-1784.
35. Watanabe, K., R. Petit, and M. Neviere, Differential theory of gratings made of
anisotropic materials. Journal of the Optical Society of America a-Optics
Image Science and Vision, 2002. 19(2): p. 325-334.
36. Temnov, V.V., et al., Active magneto-plasmonics in hybrid metal-ferromagnet
structures. Nature Photonics. 4(2): p. 107-111.
37. Clavero, C., et al., Magnetic field modulation of intense surface plasmon
polaritons. Optics Express. 18(8): p. 7743-7752.
38. Armelles, G., et al., Magnetoplasmonic nanostructures: systems supporting
both plasmonic and magnetic properties. Journal of Optics a-Pure and
Applied Optics, 2009. 11(11).
39. Yoon, K.H., M.L. Shuler, and S.J. Kim, Design optimization of nano-grating
surface plasmon resonance sensors. Optics Express, 2006. 14(11): p.
4842-4849.
40. Korpela, J., AVIDIN, A HIGH-AFFINITY BIOTIN-BINDING PROTEIN, AS A TOOL
AND SUBJECT OF BIOLOGICAL-RESEARCH. Medical Biology, 1984. 62(1): p.
5-26.
41. aldrich, s.
42. Frasconi, M., F. Mazzei, and T. Ferri, Protein immobilization at gold-thiol
surfaces and potential for biosensing. Analytical and Bioanalytical Chemistry,
2010. 398(4): p. 1545-1564.
43. Fujiwara, K., et al., Measurement of antibody binding to protein immobilized
on gold nanoparticles by localized surface plasmon spectroscopy. Analytical
and Bioanalytical Chemistry, 2006. 386(3): p. 639-644.
78
44. Polzius, R., et al., Real-time observation of affinity reactions using grating
couplers: Determination of the detection limit and calculation of kinetic rate
constants. Analytical Biochemistry, 1997. 248(2): p. 269-276.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *