帳號:guest(3.21.93.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳谷泓
作者(外文):Chen, Ku-Hung
論文名稱(中文):PIN鍺光偵測器及雪崩增益之研究
論文名稱(外文):Ge PIN Photodetectors and Study of the Avalanche Multiplication Effect
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):洪毓玨
那允中
李明昌
口試委員(外文):Yu-Chueh Hung
Yun‐Chung N. Na
Ming-Chang Lee
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:100066505
出版年(民國):103
畢業學年度:103
語文別:中文
論文頁數:94
中文關鍵詞:PIN偵測雪崩增益
外文關鍵詞:GePhotodetectorsAvalancheMultiplicationDead space
相關次數:
  • 推薦推薦:0
  • 點閱點閱:276
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出雪崩二極體(Avalanche photodiodes)與的設計流程與製程方式,藉以實現高增益的雪崩二極體。PIN二極體在不同的間距下,有不同的崩潰電壓,藉由調整i層的間距,我們期望PIN二極體可達到低崩潰電壓高增益。
本論文以低成本的RMG製成製作單晶鍺,再以控制特定的佈值及退火條件下製作PIN二極體。我們在Silicon晶圓上的測試元件量測到最小的崩壞電壓為4.5V,以1310nm的光垂直入射崩壞電壓為9V的光偵測器,在網路分析儀的量測下,其頻寬為7.3GHz。我們將實驗量測的光電流、暗電流和頻寬代入敏感度的公式。計算結果得出最小敏感度為-24dBm。
A Germanium photodetector with a low breakdown voltage of −4.5 V is demonstrated by narrowing down the intrinsic layer width of interdigitated p-i-n junctions to ∼150 nm. It reaches the physical limit of avalanche breakdown in which the performance degradation caused by the Zener tunneling process is negligible. Dark current <100 nA at −1 V is measured, and a gain exceeding 20 at −10 V is obtained with an 1310-nm laser illumination. The intrinsic bandwidth is determined to be 7.3 GHz, suggesting our device is applicable for a 7.3-Gb/s high-speed optical receiver application and beyond. Sensitivity of this device arrived -24dBm.
中文摘要 i
Abstract ii
Acknowledgment iii
Table of Contents v
List of Figures vii
List of Tables x
Chapter 1 簡介[Introduction] 1
1.1 雪崩光偵測器 1
1.2 快速熱熔退火(RMG) 6
1.3 論文架構 8
Chapter 2 雪崩光偵測器原理 10
2.1 光偵測器 10
2.1.1 PiN光偵測器 10
2.1.2 雪崩光偵測器(Avalanche Photodetector) 15
2.2 敏感度(Sensitivity) 20
2.3 Effect of dead space 23
Chapter 3 製程設計[Design and Fabrication] 30
3.1 特殊製程介紹(Special process introduction) 30
Chapter 4 實驗架設與結果 37
4.1 元件特性 37
4.2 高頻量測[High speed measurement] 44
Chapter 5 結論與未來展望 51
Appendix 54
Appendix2 71
References 93
1. Saleh, B.E.A. and M.C. Teich, Fundamentals of Photonics. 1991.
2. Koester, S., et al., Germanium-on-SOI Infrared Detectors for Integrated Photonic Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2006. 12(6): p. 1489-1502.
3. Kang, Y., et al., Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature photonics, 2009. 3(1): p. 59-63.
4. Assefa, S., F. Xia, and Y. Vlasov, Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature, 2010. 464(7285): p. 80-84.
5. Virot, L.o., et al., Germanium avalanche receiver for low power interconnects. Nature communications, 2014. 5: p. 4957.
6. Liu, Y.C., M.D. Deal, and J.D. Plummer, High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates. Applied Physics Letters, 2004. 84(14): p. 2563-2565.
7. McIntyre, R.J., Multiplication noise in uniform avalanche diodes. Electron Devices, IEEE Transactions on, 1966. ED-13(1): p. 164-168.
8. Hayat, M.M., M.C. Saleh, and M.C. Saleh, Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes. IEEE Transactions on Electron Devices, 1992. 39(3): p. 546-552.
9. Liu, J.-M., Photonic Devices. 2005.
10. Sze, S.M. and G. Gibbons, AVALANCHE BREAKDOWN VOLTAGES OF ABRUPT AND LINEARLY GRADED p‐n JUNCTIONS IN Ge, Si, GaAs, AND GaP. Applied Physics Letters, 1966. 8(5): p. 111-113.
11. Smith, R.G. and S.R. Forrest, Sensitivity of avalanche photodetector receivers for long-wavelength optical communications. Bell System Technical Journal, The, 1982. 61(10): p. 2929-2946.
12. Okuto, Y. and C. Okuto, Ionization coefficients in semiconductors: A nonlocalized property. Physical review. B, Solid state, 1974. 10(10): p. 4284-4296.
13. Pauchard, A.R., R.S. Besse, and R.S. Besse, Dead space effect on the wavelength dependence of gain and noise in avalanche photodiodes. IEEE Transactions on Electron Devices, 2000. 47(9): p. 1685-1693.
14. McKay, K.G., Avalanche Breakdown in Silicon. Physical Review, 1954. 94(4): p. 877-884.
15. Miller, S.L., Avalanche Breakdown in Germanium. Physical Review, 1955. 99(4): p. 1234-1241.
16. Smith, R.G. and S.D. Personick, Receiver design for optical fiber communication systems, in Semiconductor Devices for Optical Communication, H. Kressel, Editor. 1982, Springer Berlin Heidelberg. p. 89-160.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *