帳號:guest(18.191.45.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉雨維
作者(外文):Liu, Yu-Wei
論文名稱(中文):正交分頻多工系統中結合子載波預留與子載波注入之功率峰均比降低技術
論文名稱(外文):PAPR Reduction for OFDM Systems Using Tone Reservation and Tone Injection
指導教授(中文):王晉良
指導教授(外文):Wang, Chin-Liang
口試委員(中文):王晉良
陳紹基
溫志宏
古聖如
口試委員(外文):Wang, Chin-Liang
Chen, Sau-Gee
Wen, Jyh-Horng
Ku, Sheng-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:100064555
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:50
中文關鍵詞:正交分頻多工功率峰均比子載波預留子載波注入
外文關鍵詞:orthogonal frequency division multiplexingpeak-to-average power ratiotone reservationtone injection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:175
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
在這篇論文中,我們提出了在正交分頻多工(orthogonal frequency-division multiplexing)的系統中,結合子載波預留(tone reservation)與子載波注入(tone injection)來降低功率峰均比(peak-to-average power ratio,簡稱PAPR)。在第一個步驟中,我們透過計算特定的公制去計算每一個保留的子載波降低峰值的能力,而這些公制的定義是計算保留的子載波對降低峰值的貢獻。這樣在每個保留的子載波中可以選擇一個適當的星座點做傳送使得PAPR能夠降低到某個程度。在第二個步驟中,我們應用星座點擴充的技術來繼續降低PAPR。我們計算所有可以擴充的頻域資料點的新的公制,而這些公制是用來評估它們對所對應的時域的高峰值取樣點的貢獻度,然後選擇擁有對於頻域上輸入資料點貢獻度最多者進行子載波注入。重複第二個步驟,直到PAPR值達到所需求的PAPR門檻或是達到所限定的最大執行次數。所提出的方法不需要傳送額外訊息(side information)給接收端,所以在接收端也不需要額外的負載來做訊息偵測。比較第二代數位地面電視傳輸(Digital Video Broadcasting-Second Generation Terrestrial,簡稱DVB-T2)標準中的結合子載波注入以及主動式星座圖擴充(active constellation extension)的方法,提出的方法可以達到較好的PAPR效能以及較低的傳送能量。
In this thesis, we propose a peak-to-average power ratio (PAPR) reduction scheme based on tone reservation and tone injection for orthogonal frequency-division multiplexing systems. In the first step of the proposed scheme, we evaluate the peak-reduction capability of each of the reserved tones (or subcarriers) by computing the corresponding metrics. Based on the resulting metrics, we determine the transmitted values of each reserved tone. In the second step, we apply a constellation extension technique, tone injection, to the data subcarriers for further PAPR reduction, where each extendable constellation point is with only one possible extended constellation point. We compute new metrics of all extendable frequency-domain data samples for measuring their contributions to the corresponding time-domain peak samples, and then select the data sample with the largest metric for tone injection. The second step is repeated unless the PAPR value is lower than a predetermined threshold or the maximum number of injected tones has been reached. The proposed scheme does not need to transmit any side information to the receiver. As compared with the combined tone reservation and active constellation extension scheme adopted in the DVB-T2 standard, the proposed one can achieve better PAPR reduction performance with lower transmitted power.
Abstract i
Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction
1.1 Basics of OFDM 1
1.2 PAPR Problem 2
1.3 Thesis Outline 3
Chapter 2 PAPR Reduction Techniques
2.1 Side Information-Aided 5
2.1.1 Selected Mapping 6
2.1.2 Partial Transmit Sequences 7
2.2 Non-Side Information-Aided 7
2.2.1 Clipping and Filtering 8
2.2.2 Coding 8
2.2.3 Tone Reservation 8
2.2.4 Constellation Extension 9
2.2.4.1 Tone Injection 10
2.2.4.2 Active Constellation Extension 11
2.2.4.3 Metric-Based Symbol Predistortion Techniques 12
2.3 PAPR Reduction Techniques in the speciation of DVB-T2 16
2.3.1 Active Constellation Extension 16
2.3.2 Tone Reservation 18
Chapter 3 PAPR Reduction by Using Tone Reservation and Tone Injection
3.1 Motivation 24
3.2 The Proposed Scheme for PAPR Reduction 25
3.3 Summary 30
Chapter 4 Simulation Results and Comparison of Computational Complexity
4.1 PAPR Reduction Performance 35
4.2 Comparison of Computational Complexity 37
4.3 Summary 40
Chapter 5 Conclusions 46
Bibliography 47

[1] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing: A multi-carrier modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392-399, Aug. 1995.
[2] IEEE Std. 802.11a, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band,” Sept. 1999.
[3] ETSI, “Radio broadcasting systems; Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers,” EN 300 401 v1.4.1, June 2006.
[4] ETSI, “Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television,” EN 302 755 v1.3.1, Nov. 2011.
[5] IEEE Std. 802.16-2009, “IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Broadband Wireless Access Systems,” May 2009.
[6] X. Gu, S. Baek, and S. Park, “PAPR reduction of OFDM signal using an efficient SLM technique,” in Proc. 2010 IEEE Int. Conf. Advanced Commun. Technol. (ICACT 2010), Phoenix Park, Korea, Feb. 2010, vol. 1, pp. 324-328.
[7] R. W. Bäuml, R. F. H. Fisher, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct. 1996.
[8] C.-L. Wang, M.-Y. Hsu, and Y. Ouyang, “A low-complexity peak-to-average power ratio reduction technique for OFDM systems,” in Proc. 2003 IEEE Global Telecommun. Conf. (GLOBECOM 2003), San Francisco, CA, Dec. 2003, pp. 2357-2379.
[9] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652-4660, Dec. 2005.
[10] H. Breiling, S. H. Müller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239-41, June 2001.
[11] S. H. Müller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368-69, Feb. 1997.
[12] S. H. Müller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proc. 1997 IEEE Int. Symp. Personal, Indoor Mobile Radio Commun. (PIMRC ’97), Helsinki, Finland, Sept. 1997, vol. 3, pp. 1090-1094.
[13] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887-90, Nov. 2004.
[14] R. O'Neill and L. B. Lopes, “Envelope variations and spectral splatter in clipped multicarrier signals,” in Proc. 1995 IEEE Int. Symp. Personal, Indoor Mobile Radio Commun. (PIMRC ’95), Toronto, Canada, Sept. 1995, vol. 1, pp. 71-75.
[15] X. Li and L. J. Cimini, Jr., “Effects of clipping and filtering on the performance of OFDM,” in Proc. 1997 IEEE Veh. Technol. Conf. (VTC ’97), Phoenix, AZ, May 1997, vol. 3, pp. 1634-1638.
[16] T. A. Wilkinson and A. E. Jones, “Minimization of the peak to-mean envelope power ratio of multicarrier transmission schemes by block coding,” in Proc. 1995 IEEE Veh. Technol. Conf. (VTC ’95), Chicago, IL, July 1995, vol. 2, pp. 825-829.
[17] R. Van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc. 1996 IEEE Global Telecommun. Conf. (GLOBECOM ’96), London, England, Nov. 1996, vol. 1, pp. 740-744.
[18] J. Tellado, “Peak to average power reduction for multicarrier modulation,” Ph.D. dissertation, Stanford Univ., Sept. 1999.
[19] C. A. Devlin, A. Zhu, and T. J. Brazil, “Gaussian Pulse Based Tone Reservation for Reducing PAPR of OFDM Signals,” in Proc. 2007 IEEE Veh. Technol. Conf. - Spring (VTC 2007-Spring), Dublin, Ireland, Apr. 2007, pp. 3096-3100.
[20] L. Wang and C. Tellambura, “An adaptive-scaling tone reservation algorithm for PAR reduction in OFDM systems,” in Proc. 2006 IEEE Global Telecommun. Conf. (GLOBECOM 2006), San Francisco, CA, Nov., 2006.
[21] L. Wang and C. Tellambura, “Analysis of clipping noise and tone-reservation algorithms for peak reduction in OFDM Systems,” IEEE Trans. Veh. Technol., vol.57, no. 3, pp. 1675-1694, May 2008.
[22] C.-L. Wang, Y.-C. Tsai and S.-J. Ku, “A low-complexity constellation extension scheme for PAPR reduction of OFDM signals,” in Proc. 2009 IEEE Veh. Technol. Conf. – Fall (VTC 2009-Fall), Anchorage, AK, Sep. 2009.
[23] J. Hou, C. Tellambura and J. Ge “Tone injection for PAPR reduction using parallel tabu search algorithm in OFDM systems.,” in Proc. 2012 IEEE Global Telecommun. Conf. (GLOBECOM 2012), Anaheim, CA, Dec. 2012, pp. 4899-4904.
[24] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258-268, Sept. 2003.
[25] L. Wang and C. Tellambura, “An adaptive-scaling algorithm for OFDM PAR reduction using active constellation extension,” in Proc. 2006 IEEE Veh. Technol. Conf. - Fall (VTC 2006-Fall), Montreal, Canada, Sept. 2006.
[26] K. Bae, J. G. Andrews, and E. J. Powers, “Adaptive active constellation extension algorithm for peak-to-average ratio reduction in OFDM,” IEEE Commun. Lett., vol. 14, no. 1, pp. 39-41, Jan. 2010.
[27] S. Sezginer and H. Sari, “OFDM peak power reduction using metric-based amplitude predistortion,” in Proc. 2005 IEEE Global Telecommun. Conf. (GLOBECOM 2005), Saint Louis, Missouri, Nov. 2005, vol. 3, pp. 1486-1489.
[28] S. Sezginer and H. Sari, “Metric-based symbol pedistortion techniques for peak power reduction in OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2622-2629, July 2007.
[29] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol.5, no. 5, pp. 185-187, May 2001.
[30] A. V. Oppenheim, R.W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1998.
[31] L. Wang and C. Tellambura, “An adaptive-scaling tone reservation algorithm for PAR reduction in OFDM systems,” in Proc. 2006 IEEE Global Telecommun. Conf. (GLOBECOM 2006), San Francisco, CA, Nov., 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *