|
[1] A. D. Wyner, “The wiretap channel,” Bell Syst. Tech. J., vol. 54, pp. 1355–1387, 1975. [2] S. K. Leung-Yan-Cheong and M. E. Hellman, “The Gaussian wiretap channel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, July 1978. [3] I. Csisz´ar and J. Korner, “Broadcast channels with confidential messages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, 1978. [4] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-antenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2547–2553, JUNE 2009. [5] H. V. P. R. Bustin, R. Liu and S. Shamai, “An MMSE approach to the secrecy capacity of the MIMO Gaussian wiretap channel,” in Proc. IEEE Int. Symp. Information Theory, July. 2009, pp. 2602–2606. [6] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas-I: the MISOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3088–3104, Jul. 2010. [7] ——, “Secure transmission with multiple antennas-II: the MIMOME wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Nov. 2010. [8] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972, Aug. 2011. [9] S. Shafiee and S. Ulukus, “Achievable rates in Gaussian MISO channels with secrecy constraints,” IEEE Trans. Inf. Theory, pp. 2466–2470, Jun. 2007. [10] J. Li and A. Petropulu, “Optimal input covariance for achieving secrecy capacity in Gaussian MIMO wiretap channels,” in Proc. IEEE Int. Workshop Information Forensics and Security (WIFS), Tenerife, Spain, Mar. 2010, pp. 3362–3365. [11] S. Shafiee and S. Ulukus, “Towards the secrecy capacity of the Gaussian MIMO wire-tap channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4033–4039, Sept. 2009. [12] J. Li and A. Petropulu, “Optimality of beamforming for secrecy capacity MIMO wiretap channels,” in 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Dec. 2012, pp. 276–281. [13] S.-C. Lin, T.-H. Chang, Y.-L. Liang, Y.-W. P. Hong, and C.-Y. Chi, “On the impact of quantized channel feedback in guaranteeing secrecy with artificial noise: The noise leakage problem,” IEEE Trans. on Wireless Commun., vol. 10, no. 3, pp. 901–915, Mar. 2011. [14] S.-C. Lin, L.-R. Chen, and Y.-W. P. Hong, “On the optimality of secrecy beamforming in multiple-input single-output single-antenna eavesdropper scenarios with only channel direction information at the transmitter.” [15] P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4687–4698, 2008. [16] S. A. Jafar and A. J. Goldsmith, “Isotropic fading vector broadcast channels: The scalar upperbound and loss in degrees of freedom,” IEEE Trans. Inform. Theory, vol. 51, pp. 848–857, 2005. [17] A. N. Dimitri P. Bertsekas and A. E. Ozdaglar, Convex Analysis and Optmization. Athena Scientific, 2003. [18] R. Hunger, Analysis and Transceiver Design for the MIMO Broadcast Channel. Springer, 2013. [19] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, June 2007. [20] H. C. P. H. Huh and G. Caire, “Multiuser MISO transmitter optimization for intercell interference mitigation,” IEEE Trans. Signal Process., vol. 58, pp. 4272 – 4285, Aug. 2010. [21] M. Payaro and D. P. Palomar, “Hessian and concavity of mutual information, differential entropy, and entropy power in linear vector Gaussian channels,” IEEE Trans. Inf. Theory, vol. 55, no. 8, Aug. 2009. [22] A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting over fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2453–2469, Jun. 2008. [23] D. A. Harville, Matrix Algebra From a Statistician's Perspective, second edition ed. Springer, 2008. [24] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University Press, 1999. [25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge University Press, 2004. [26] A. Hjørungnes, Complex-Valued Matrix Derivatives. Cambridge University Press, 2011. [Online]. Available: http://dx.doi.org/10.1017/CBO9780511921490 |