帳號:guest(3.142.35.54)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張庭瑋
作者(外文):Chang, Ting-Wei
論文名稱(中文):解決有向性Steiner Tree問題的有效率近似演算法
論文名稱(外文):Efficient Approximation Algorithms for Solving Directed Steiner Tree Problem
指導教授(中文):林華君
指導教授(外文):Lin, Hwa-Chun
口試委員(中文):林華君
陳俊良
蔡榮宗
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:100064524
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:128
中文關鍵詞:近似演算法Steiner樹有向性Steiner樹有效率群播繞徑
外文關鍵詞:approximation algorithmsSteiner treedirected Steiner treeefficientmulticast routing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:333
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文主要在探討 directed Steiner tree problem(DSTP)的近似演算法。Directed Steiner Tree問題為:給定一有向加權圖G=(V,E,c),V為節點集合,E為邊的集合,對於G中的任一條邊上都存在一個實數c,稱c為此邊的成本。此外,V集合中存在一個節點r以及一個子集合X,稱此節點r為root,X集合為terminal 集合。目標為在G中找到一棵以r為根,衍生至X集合中所有節點的最小成本樹,也就是說,此最小成本樹包含r至X集合中所有節點路徑。在此之前,Charikar et al.等人提出了一個以遞迴方式建構Steiner的DSTP演算法,但是在這樣的遞迴演算法中,當遞迴層數越高時,時間複雜度成指數成長,相當可觀,且在演算法中有過多重複的遞迴呼叫。因此,本篇論文基Charikar’s algorithm,改進其演算法中過多重複運算的情況,提出modified Charikar’s algorithm with improvement on terminal(MCAIT)以及modified Charikar’s algorithm with improvement on terminal and vertex(MCAITV)。接著,本篇論文亦提出group terminal 的概念,將此概念導入MCAIT 及MCAITV 中,提出group algorithm with improvement on terminal(GAIT)以及group algorithm with improvement on terminal and vertex(GAITV)。
  本篇論文中亦證明四個演算法的approximation bound和Charikar's algorithm相同,但時間複雜度皆較Charikar's algorithm的時間複雜度低並且在模擬的結果可以得知我們的方法相較於Charikar’s algorithm 在運行速度上有顯卓的改善。
第一章 簡介 1
第二章 相關演算法回顧 3
第三章 MCAIT 18
第四章 MCAITV 58
第五章 Group Algorithm 83
第六章 模擬與結果 115
第七章 結論 126
第八章 參考文獻 127
[1]P. Berman and V. Ramaiyer, “Improved approximation  algorithms for the Steiner tree problem,” J. Algorithms, vol. 17, pp. 381–408, 1994.
[2]L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner trees, ”Acta Informatica, vol. 15, pp. 141–145, 1981.
[3]M. Karpinski and A. Zelikovsky, “New approximation algorithms for the Steiner tree problem,” J. Comb. Optimiz., vol. 1, pp. 1–19, 1997.
[4]H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in Graphs,” Math. Japonica, vol. 24, no. 6, pp. 573-577, 1980.
[5]M. Charikar, C. Chekuri, T. Y. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li, “Approximation algorithms for directed Steiner problems,” J. Algorithms, vol. 33, no. 1, pp. 73–91, 1999.
[6]A. Agrawal, P. Klein, and R. Ravi, “When trees collide: an approximation algorithm for the generalized Steiner problem on networks,” Technical Report CS-90-32, Brown University, 1991.
[7]A. Zelikovsky, “An 11/6-approximation Algorithm for the Network Steiner Problem,” Algorithmica, vol. 9, pp. 463–470, 1993.
[8]A. Zelikovsky, “A series of approximation algorithms for the acyclic directed Steiner tree problem”, Algorithmica, vol. 18, pp. 99–110, 1997.
[9]K. Jain, “A factor 2 approximation algorithm for the generalized Steiner network problem,” Combinatorica, vol. 21, no. 1, pp. 39–60, 2001.
[10]C. Chekuri, G. Even, and G. Kortsarz, “A greedy approximation algorithm for the group Steiner problem,” Discrete Applied Mathematics, vol. 154, no. 1, pp. 15–34, 2006.
[11]C. Chekuri, G. Even, A. Gupta, and D. Segev, “Set connectivity problems in undirected graphs and the directed Steiner network problem,” in ACM-SIAM Symposium on Discrete Algorithms, pp. 532–541, 2008.
[12]N. Garg, G. Konjevod, and R. Ravi, “ A polylogarithmic approximation algorithm for the group Steiner Tree problem, ” in ACM-SIAM Symposium on Discrete Algorithms, pp. 253–259, 1998.
[13]C. H. Helvig, G. Robins, and A. Zelikovsky, “Improved approximation scheme for the group Steiner problem”, Networks, vol. 37, no.1 , pp. 8–20, 2001.
[14]M. I. Hsieh, E. H. K. Wu, and M. F. Tsai, “FasterDSP: a faster approximation algorithm for directed Steiner tree problem,” Journal Of Information Science and Engineering, vol. 22, pp. 1409–1425, 2006.
[15]Roos, S.: ‘Scheduling for remove and other partially connected architectures’. Laboratory of Computer Engineering, Delft University of Technology, Netherlands, 2001.
[16]P. Winter, “Steiner problem in networks: A survey,” Networks, vol. 17, no. 2, pp. 129–167, 1987.
[17]L. Zosin and S. Khuller, “On directed Steiner trees,” in ACM-SIAM Symposium on Discrete Algorithms, pp. 59-63, 2002.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *