帳號:guest(3.12.164.62)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳良岳
論文名稱(中文):On Strategies to Maximize Infections in a Susceptible-Infected Network with Two Viruses
論文名稱(外文):二種病毒在 Susceptible-Infected 網絡模型中的最大化感染策略
指導教授(中文):李端興
口試委員(中文):張正尚
李端興
黃之浩
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:100064510
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:24
中文關鍵詞:流行病模型競爭者數學近似社群偵測策略
相關次數:
  • 推薦推薦:0
  • 點閱點閱:507
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
有許多的現象像流行病一樣擴散,例如病毒傳染丶謠言丶意試型態丶產品行銷等
等。當在網路中出現兩個競爭者時,便出現了一個疑問:佔據一開始的哪些位置
能影響到最多的人。我們將兩種病毒在網路中擴散的模型稱為 SI1I2 model。從
一種病毒延伸到兩種病毒時,在數學近似上出現了一些問題。我們根據社群偵測
的結果導出一個合適的數學近似方程式。比較了幾種一開始選擇位置的策略。選
擇每個社群中選擇網路中鄰居最多的點會能有較大的影響力。數學的近似也支持
這個結果。
Many phenomena can be model as epidemic in social network, such as viruses, rumors,ideologies, or marketing etc. When there exist two competitors who try to maximize
each spread in the network, there comes the question that what nodes target in the very beginning to achieve the maximum spread. The epidemic model we use is called
SI1I2(Susceptible-Infected1-Infected2) model, where there are two viruses spreading in the network. We fi nd that there are some problems when extending the approximation from one virus to two viruses. We derive the appropriate approximation according to community detection result. We compare several strategies for the initial chosen nodes
for each competitor. Choosing top degree nodes in each community is the strategy we give which has more influence than others according to centrality properties. Our
approximation agrees with these results.
Contents 1
List of Figures 3
1 Introduction 4
2 Model 6
2.1 SI1I2 model 6
2.2 Community detection 7
3 Approximation 8
3.1 Mean- eld approximation 8
3.2 Degree-based approximation 10
3.3 Degree-based approximation with communities 12
4 Experiments 15
5 Conclusions 22
Bibliography 23
[1] DOMINGOS, Pedro; RICHARDSON, Matt. Mining the network value of customers.In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2001. p. 57-66.
[2] KEMPE, David; KLEINBERG, Jon; TARDOS, Eva. Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference n Knowledge discovery and data mining. ACM, 2003. p.137-146.
[3] GRANOVETTER, Mark. Threshold models of collective behavior. American journal of sociology, 1978, 1420-1443.
[4] CARNES, Tim, et al. Maximizing influence in a competitive social network: a follower's perspective. In: Proceedings of the ninth international conference on Electronic commerce. ACM, 2007. p. 351-360.
[5] PRAKASH, B. Aditya, et al. Winner takes all: competing viruses or ideas on fair-play networks. In: Proceedings of the 21st international conference on World Wide Web. ACM, 2012. p. 1037-1046.
[6] NEWMAN, Mark. Networks: an introduction. OUP Oxford, 2009.
[7] CLAUSET, Aaron; NEWMAN, Mark EJ; MOORE, Cristopher. Finding community structure in very large networks. Physical review E, 2004, 70.6: 066111.
[8] FIRE, Michael; PUZIS, Rami; ELOVICI, Yuval. Organization Mining Using Online Social Networks. arXiv preprint arXiv:1303.3741, 2013.
[9] YAN, Qiuling; GUO, Shaosong; YANG, Dongqing. Influence maximizing and local influenced community detection based on multiple spread model. In: Advanced Data Mining and Applications. Springer Berlin Heidelberg, 2011. p. 82-95.
[10] KOSTKA, Jan; OSWALD, Yvonne Anne; WATTENHOFER, Roger. Word of mouth: Rumor dissemination in social networks. In: Structural Information and Communication Complexity. Springer Berlin Heidelberg, 2008. p. 185-196.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *