帳號:guest(3.139.82.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅文杰
作者(外文):Lo, Wen-Chieh
論文名稱(中文):雙向放大轉送中繼系統中具有中繼點選擇機制與高頻譜效率之自動重傳要求協定
論文名稱(外文):A Spectral-Efficient ARQ Scheme with Relay Selection for Two-Way Amplify-and-Forward Relay Systems
指導教授(中文):王晉良
口試委員(中文):黃經堯
黃之浩
林風
王晉良
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:100064502
出版年(民國):102
畢業學年度:101
語文別:英文中文
論文頁數:47
中文關鍵詞:雙向放大轉送中繼系統中繼點選擇機制自動重傳要求協定
外文關鍵詞:Two-way amplify-and-forward relay systemsRelay selectionARQ
相關次數:
  • 推薦推薦:0
  • 點閱點閱:156
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
在這篇論文中,我們在雙向放大多中繼系統中提出具有中繼點選擇機制與高頻譜效率之自動重傳要求協定。我們首先描述了一個簡單式自動重傳要求協定,其中當兩個端點接收失敗,此協定使用雙向式重傳。另外,當其中一個端點接收失敗,此協定使用單向式重傳。由於簡單式自動重傳要求協定包含單向式重傳,會造成此系統有頻譜效率損失的缺點。為了克服簡單式自動重傳要求協定的缺點,我們接著提出高頻譜效率之自動重傳要求協定,其中將簡單式重傳要求協定中的單向式重傳改變為雙向式部分重傳,即接收失敗的端點持續維持重傳而接收成功的端點將傳送新的資料。我們在雙向放大中繼系統使用高頻譜效率之自動重傳要求協定以二階通道統計形式呈現中斷機率與有效吞吐量之效能分析。藉由分析中斷機率證明高頻譜效率自動重傳要求協定可以達到全部的時間分集。為了有效地提升有效吞吐量,我們發展一種單一中繼點選擇機制。此中繼點選擇機制能夠在所有中繼點中選出一個提供最大有效吞吐量之中繼點。另外,我們也藉由有效吞吐量最佳化提供了最佳地最大重傳次數。最後,模擬結果驗證出我們提出的方法是有效的。
In this thesis, we present a spectral-efficient automatic repeat request (SEARQ) scheme with relay selection for two-way amplify-and-forward relay systems, where multiple single-antenna relays are considered but only one relay is selected to join in cooperation with two terminals. The proposed SEARQ scheme exploits two-way retransmission for failure of reception at both terminals, and adopts two-way partial retransmission for failure of reception at only one terminal in a way that the corresponding source performs retransmission and the other source continues to transmit new data. Both of the outage probability and effective throughput for the proposed SEARQ scheme are derived in closed form based on second-order channel statistics. To further improve the effective throughput performance, we develop a single-relay selection method for combination with the proposed SEARQ scheme. We also derive an optimal maximum-retransmission round for the proposed SEARQ scheme with the optimally selected relay by solving a maximization problem of the effective throughput. Simulation results are given to verify the theoretical analyses as well as to demonstrate the effectiveness of the proposed approach.
Abstract i
Contents ii
List of Figures iv
List of Tables vi
Chapter 1 Introduction 1
Chapter 2 Diversity-Multiplexing Tradeoff Analysis of AF Two-Way Relaying Channel with Hybrid ARQ over Rayleigh Fading Channels [14] 6
2.1 System Model 7
2.2 Diversity-Multiplexing Tradeoff (DMT) Analysis 9
2.2-1 DMT of Scheme I 10
2.2-2 DMT of Scheme II 14
2.3 Discussions 15
Chapter 3 A Spectral-Efficient ARQ Scheme with Relay Selection for Two-Way Amplify-and-Forward Systems 18
3.1 Motivations 19
3.2 System Model 20
3.3 A Spectral-Efficient ARQ Scheme 24
3.3-1 A Simple ARQ Scheme 24
3.3-2 Proposed Spectral-Efficient ARQ Scheme 27
3.4 Asymptotic Analysis 29
3.4-1 Outage Probability Analysis 29
3.4-2 Effective Throughput Analysis 31
3.5 Proposed Spectral-Efficient ARQ Scheme with Relay Selection 33
3.5-1 Single-Relay Selection Scheme 34
3.5-2 Optimal Maximum-Retransmission Round for the Proposed SEARQ Scheme with Relay Selection 34
Chapter 4 Simulation Results 38
Chapter 5 Conclusions 45
References 46
[1] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communication in wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp. 68–73, Oct. 2004.
[2] J. N. Laneman, and G. W. Wornell, “Distributed space-time-coded procotols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003.
[3] A. K. Sadek, W. Su, and K. J. R. Liu, “Multinode cooperative communications in wireless networks,” IEEE Trans. Signal Process., vol. 55, no. 1, pp. 341–355, Jan. 2007.
[4] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3037–3063, Sep. 2005.
[5] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
[6] P. Larson, N. Johansson, and K. E. Sunell, “Coded bi-directional relaying,” in Proc. IEEE Veh. Technol. Conf. (VTC 2006–Spring), pp. 851–855, Australia, May 2006.
[7] B. Rankov and A. Wittneben, “Spectral efficient protocols for half-duplex fading relay channels,” IEEE J. Select. Areas Commun., vol. 25, no. 2, pp. 379–389, Feb. 2007.
[8] S. Chen, W. Wang, and X. Zhang, “Performance analysis of multiuser diversity in cooperative multi-relay networks under Rayleigh-Fading channels,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3415–3419, Jul. 2009.
[9] L. Song, “Relay selection for two-way relaying with amplify-and-forward protocols,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1954–1959, Mar. 2011.
[10] H. Guo, J. Ge, and H. Ding, “Symbol error probability of two-way amplify-and-forward relaying,” IEEE Commun. Letters, vol. 15, no. 1, pp. 22–14, Jan. 2011.
[11] F. Iannello and Osvaldo Simeone, “Throughput analysis of Type-I HARQ strategies in two-way relay channels,” in 43rd Annual Conf. on Inform. Sciences and Sys., Baltimore, MD, pp. 539–544, Mar. 2009.
[12] Q.-T Vien, L.-N. Tran, and H. X. Nguyen, “Network coding-based ARQ retransmission strategies for two-way wireless relay networks,” in Intl. Conf. on Software Telecommunications and Computer Networks (SoftCOM), pp. 180–184, Sep. 2010.
[13] Z. Chen, C. Zhang, J. Zhang, and G. Wei, “ARQ protocols for two-way relay systems,” in International Conf. on Wireless Commun. and Mobile Computing, Chengdu, China, pp. 1–4, Sep. 2010.
[14] K. Xu, Y. Gao, Y. Xu, and W. Yang, “Diversity-multiplexing tradeoff analysis of AF two-way relaying channel with hybrid ARQ over Rayleigh fading channels,” published in IEEE Trans. Veh. Technol., Jun. 2013.
[15] C.-L. Wang, T.-N. Cho, W.-C. Lo, and J.-Y. Chen, “Efficient ARQ protocols for a two-way amplify-and-forward relaying system,” accepted in the 2013 IEEE Veh. Technol. Conf. (VTC 2013–Spring), Dresden, Germany, Jun. 2013.
[16] S. Xu and Y. Hua, “Optimal design of spatial source-and-relay matrices for a non-regenerative two-way MIMO relay system,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1645–1655, May 2011.
[17] R. Wang and M. Tao, “Joint source and relay precoding designs for MIMO two-way relaying based on MSE criterion,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1352–1365, Mar. 2012.
[18] K. J. Lee, H. Sung, E. Park, and I. Lee, “Joint optimization for one and two-way MIMO AF multiple-relay systems,” IEEE Trans. Wireless Commun., vol. 9, no. 12, pp. 3671–3681, Dec. 2010.
[19] C.-L. Wang, T.-N. Cho, and K.-J. Yang, “On power allocation and relay selection for a two-way amplify-and-forward relaying system,” published in IEEE Trans. Commun., Jun. 2013.
[20] Y. Yang, J. H. Ge, Y. C. Ji, and Y. Gao, “Performance analysis and instantaneous power allocation for two-way opportunistic amplify-and-forward relaying,” IET Commun., vol. 2, iss. 10, pp. 1430–1439, Jul. 2011.
[21] C. Li, L. Yang, and Y. Shi, “An asymptotically optimal cooperative relay scheme for two-way relaying protocol,” IEEE Signal Process. Lett., vol. 17, no. 2, pp. 145–148, Feb. 2010.
[22] X. Chen, T.-W. Siu, Q. F. Zhou, and F. C. M. Lau, “High-SNR analysis of opportunistic relaying based on the maximum harmonic mean selection criterion,” IEEE Signal Process. Lett., vol. 17, no. 8, pp. 719–722, Aug. 2010.
[23] H.-L. Chiu and S.-H. Wu, “Cooperative ARQ for distributed space-time coding: the diversity-multiplexing-delay tradeoff,” in Proc. IEEE ISITA, Auckland, New Zealand, Dec. 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *