帳號:guest(18.117.229.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張晉瑋
作者(外文):Jhang, Jin-Wei
論文名稱(中文):支援壓縮取樣多候選向量及免反矩陣運算之投影向量選取正交匹配追蹤處理器
論文名稱(外文):A Projection-Based Atom Selection Orthogonal Matching Pursuit Processor with Multiple Candidates and Matrix Inversion Bypass for Compressive Sensing
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):蔡佩芸
陳喬恩
吳仁銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:100064501
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:63
中文關鍵詞:壓縮取樣正交匹配追蹤
外文關鍵詞:Compressive SensingOrthogonal Matching Pursuit
相關次數:
  • 推薦推薦:0
  • 點閱點閱:544
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在許多研究領域都有用到壓縮取樣,而所有壓縮取樣的問題都在追求高速度與完美訊號重建表現。這份論文提出一個支援壓縮取樣多候選向量及免反矩陣運算之投影向量選取正交匹配追蹤處理器。投影向量選取正交匹配追蹤相較於正交匹配追蹤有比較好的訊雜比,但是運算複雜度則是較正交匹配追蹤高。我們提出的演算法化簡了投影向量選取正交匹配追蹤並且沒有任何損失表現。這個硬體架構是設計給長度256的向量輸入訊號,稀疏性為12,64筆量測訊號。這篇論文所提出的處理器是用台積電90奈米製程,時脈為140百萬赫茲,總面積為11.18mm2`,總重建時間為72.25微秒。
Many research fields have the motivation using the compressive sensing. All the CS
problems pursue the high speed (low complexity) and high signal reconstruction per-
formance. This study proposed a projection-based atom selection orthogonal matching
pursuit (POMP) with multiple candidates and matrix inversion bypass (MCMIB) al-
gorithm. The POMP has better signal-to-noise ratio (SRNR) performance than the
orthogonal matching pursuit (OMP) algorithm, but the computational complexity of
the POMP is extremely high. This algorithm greatly simplified the computational com-
plexity of the POMP algorithm without loss any SRNR performance. The architecture
is designed for the 256-length input vector with sparsity 12, and 64 measurement data.
The proposed processor is implemented by TSMC 90nm 1P9M CMOS technology. The
clock frequency is 140MHz, and the chip area is 11.18mm 2 . The total reconstruction
time is 72.25 µs.
1. Introduction
1.1 Compressive Sensing
1.2 Research Motivation
1.3 Organization of This Thesis
2 Reconstruction Algorithms for Compressive Sensing
2.1 Signal Model of Compressive Sensing
2.2 Orthogonal Matching Pursuit (OMP) Algorithm
2.3 Projection-Based Atom Selection Orthogonal Matching Pursuit (OMP) Algorithm
2.4 Orthogonal Matching Pursuit (OMP) via Matrix Inversion Bypass Algorithm
3 Proposed Projection-based Atom Selection with Multi-Dimension Matrix Inversion Bypass Algorithm
3.1 Projection-based Atom Selection with Multi-Dimension Matrix Inversion Bypass Algorithm
3.2 Complexity Analysis
3.2.1 Orthogonal Matching Pursuit Algorithm
3.2.2 Projection-Based Atom Selection OMP Algorithm
3.2.3 OMP via Matrix Inversion Bypass Algorithm
3.2.4 Proposed Algorithm
3.3 Simulation and Performance Analysis
3.3.1 Environment Parameter Setup
3.3.2 Experiment Results
4 Architecture Design
4.1 System Architecture
4.2 Initial Warm-up Circuit
4.3 8x8 Matrix Inversion
4.3.1 2x2 Matrix Inversion
4.3.2 2x2 and 4x4 Matrix Multiplication
4.3.3 4x4 and 8x8 Matrix Inversion
4.4 Index Selection Circuit
4.5 Timing Schedule
4.6 Fixed-point Simulation
5 Implementation Results
5.1 Design Flow
5.2 Pre-synthesis Design and Verification
5.3 Synthesis Result
5.4 Post-layout Result
5.5 Comparison
6 Conclusion
[1] E. Candes and M. Wakin, “An introduction to compressive sampling,” Signal Pro-
cessing Magazine, IEEE, vol. 25, no. 2, pp. 21–30, 2008.
[2] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions on,
vol. 52, no. 4, pp. 1289–1306, 2006.
[3] M. Wakin, “Sparse image and signal processing: Wavelets, curvelets, morphological
diversity (starck, j.-l., et al; 2010) [book reviews],” Signal Processing Magazine,
IEEE, vol. 28, no. 5, pp. 144–146, 2011.
[4] M. Mishali, Y. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Analog to
digital at sub-nyquist rates,” Circuits, Devices Systems, IET, vol. 5, no. 1, pp.
8–20, 2011.
[5] M. Mishali, Y. Eldar, and A. Elron, “Xampling: Signal acquisition and processing
in union of subspaces,” Signal Processing, IEEE Transactions on, vol. 59, no. 10,
pp. 4719–4734, 2011.
[6] M. Mishali and Y. Eldar, “Xampling: Analog data compression,” in Data Com-
pression Conference (DCC), 2010, 2010, pp. 366–375.
[7] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” Selected
Areas in Communications, IEEE Journal on, vol. 23, no. 2, pp. 201–220, 2005.62 BIBLIOGRAPHY
[8] Z. Tian and G. Giannakis, “Compressed sensing for wideband cognitive radios,” in
Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International
Conference on, vol. 4, 2007, pp. IV–1357–IV–1360.
[9] M. A. T. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems,”
Selected Topics in Signal Processing, IEEE Journal of, vol. 1, no. 4, pp. 586–597,
2007.
[10] D. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underdeter-
mined systems of linear equations by stagewise orthogonal matching pursuit,” In-
formation Theory, IEEE Transactions on, vol. 58, no. 2, pp. 1094–1121, 2012.
[11] R. V. Deanna Needell, “Uniform uncertainty principle and signal recovery via regu-
larized orthogonal matching pursuit,” Foundations of Computational Mathematics
- FoCM, vol. 9, pp. 317–334, 2009.
[12] S. Chatterjee, D. Sundman, and M. Skoglund, “Look ahead orthogonal matching
pursuit,” in Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE Inter-
national Conference on, 2011, pp. 4024–4027.
[13] S. Chatterjee, K. V. S. Hari, P. Handel, and M. Skoglund, “Projection-based atom
selection in orthogonal matching pursuit for compressive sensing,” in Communica-
tions (NCC), 2012 National Conference on, 2012, pp. 1–5.
[14] A. Septimus and R. Steinberg, “Compressive sampling hardware reconstruction,” in
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on, 2010, pp. 3316–3319.
[15] J. Stanislaus and T. Mohsenin, “High performance compressive sensing reconstruc-
tion hardware with qrd process,” in Circuits and Systems (ISCAS), 2012 IEEE
International Symposium on, 2012, pp. 29–32.BIBLIOGRAPHY 63
[16] G. Huang and L. Wang, “High-speed signal reconstruction with orthogonal match-
ing pursuit via matrix inversion bypass,” in Signal Processing Systems (SiPS), 2012
IEEE Workshop on, 2012, pp. 191–196.
[17] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal recon-
struction,” Information Theory, IEEE Transactions on, vol. 55, no. 5, pp. 2230–
2249, 2009.
[18] A. Bjorck, “Numerical methods for least squatres problems,” 1996.
[19] D. Bailey and H. Ferguson, “A strassen-newton algorithm for high-speed paral-
lelizable matrix inversion,” in Supercomputing ’88. [Vol.1]., Proceedings., 1988, pp.
419–424.
[20] (2013, Oct.). [Online]. Available:
www.tsmc.com/english/dedicatedFoundry/technology/65nm.htm
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *