|
1. Unger, M., et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-116, (2000). 2. Melin, J. & Quake, S. R. Microfluidic large-scale integration: the evolution of design rules for Biological Automation. Annu. Rev. Biophys. Biomol. Struct., 36, 213-231, (2007). 3. Streets, A. M., & Huang, Y. Chip in a lab: Microfluidics for next generation life science research. Biomicrofluidics, 7, 011302, (2013). 4. Novick and Szilard. Description of Chemostat. Science 1950 5. de Crécy, E. et al. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl. Microbiol. Biotechnol. 77, 489–496 (2007) 6. Balagadde F. K, You, L. C, Hansen, C. L, Arnold, F. H., & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309: 137–140, (2005). 7. Groisman, A., Lobo, C., Cho, H., Campbell, J. K., Dufour, Y. S., Stevens A., M., & Levchenko, A. A microfluidic chemostat for experiments with bacterial and yeast cells. Nature Method 9, 685-689, (2005). 8. Long, Z., Nugent, E., Javer, A., Cicuta, P., Sclavi, B., Lagomarsino, M. C., & Dorfman, K. D. Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip 13, 947-954, (2013). 9. O’Toole, Kaplan, Roberto Kolter,biofilm formation as microbial development, Annu. Rev. Microbiol. 2000. 54:49–79 10. Unger, M. et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000). 11. Melin, J. & Quake, S. R. Microfluidic large-scale integration: the evolution of design rules for Biological Automation. Annu. Rev. Biophys. Biomol. Struct., 36, 213-231, (2007). 12. Balagadde, F. K. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187 (2008). 13. de Crecy-Lagard V. A., Bellalou, J. M., Mutzel, R. & Marliae, P. Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli. BMC Biotechnol. 1 10 (2001). 14. Unger, M., et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113-116, (2000). 15. Melin, J. & Quake, S. R. Microfluidic large-scale integration: the evolution of design rules for Biological Automation. Annu. Rev. Biophys. Biomol. Struct., 36, 213-231, (2007). 16. Balagadde F. K, You, L. C, Hansen, C. L, Arnold, F. H. & Quake, S. R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137– 140 (2005). 17. de Crécy, E. et al. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl. Microbiol. Biotechnol. 77, 489–496 (2007) 18. Ghannoum, M., & O’Toole, G. A. (eds) in Microbial Biofilm. (ASM Press, 2004). 19. PIlyugin, S. S., & Waltman, P. The simple chemostat with wall growth. S.I.A.M. J. Appl. Math. 5, 1552-1572, (1999). 20. Ghannoum, M., & O’Toole, G. A. (eds) in Microbial Biofilm. (ASM Press, 2004). 21. Smith, H. L. & Waltman, P. in The theory of the Chemostat (Cambridge University Press, 1995). 22. Mohan, R. et al. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens. Bioelectron. 49, 118–125 (2013). 23. Clark, D. S. & Blanch, H. W. Biochemical Engineering (2nd edition, CRC Press, 1996). 24. LeClerc, J. E., Li, B., Payne, W. L., & Cebula, T. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208-1211, (1996). 25. Kaeberlein, T., Lewis, K., & Epstein, S. S. Uncultivable microorganism in a pure culture in a simulated natural environment. Science 296, 1127-1129, 2002. 26. Smith, H. L. Bacteria competition in serial transfer culture Mathematical Bioscience 229, 149-159, (2011).
|