帳號:guest(3.149.245.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游原瑞
作者(外文):You, Yuan-Ruei
論文名稱(中文):有機薄膜電晶體應用於銅離子及氰離子偵測
論文名稱(外文):Organic Thin Film Transistor Sensor in Presence of Cu2+ and CN- Ions
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):朱治偉
陳方中
劉柏村
口試委員(外文):Chu, Chih-Wei
Chen, Fang-Chung
Liu, Po-Tsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063542
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:47
中文關鍵詞:感應器
外文關鍵詞:sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:352
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
在本論文中,我們將有機半導體材料五苯環和schiff base pyrene衍生物製作成雙分子層的有機薄膜電晶體,應用於銅離子及氰離子偵測。量測到載子遷移率與門檻電壓分別為0.12 cm2/V-s及-22.2伏特,開關電流比為105。我們發現在13種陽離子中,元件只有在遇到含有銅離子的溶液時,門檻電壓及關路電流會有劇烈變化,而在9種陰離子中,只有遇到含氰離子的溶液,飽和電流會降低。在混合兩種離子的溶液中,元件還是只對銅離子、氰離子的選擇性偵測。
而在元件的敏感性測試,我們將銅離子溶液稀釋成20到350微莫爾濃度,氰離子溶液稀釋成100到350微莫爾濃度進行測試。從原子力顯微鏡和紅外線光譜的結果可看出pyrene與銅離子反應形成 pyrene-pyrene* coordination,而與氰離子反應形成benzoxazole ring,因此造成晶粒從長條狀重新自我組織成細小星型的形狀。
In this thesis, we described the self-assembly of pyrene derivative by constructing pentacene / schiff base pyrene derivative(P1) OTFTs for metal and anion sensor. The carrier mobility (µ) of 0.12 cm2/V-s, a threshold voltage (Vth) of -22.20 V, and five orders on/off current ratio device parameters are extracted from bilayer OTFTs. From this device we observed huge change only for Cu2+ among the thirteen metal ions and CN- among the nine anion ions, by changes in Vth and Ioff current for Cu2+ ions whereas Isat decrease for CN- ions. The selectivity of both ions is noticed from the mixed ion solutions.
The sensitivity is executed in different concentrations (ranging from 20 to 350 µM) of Cu2+ and CN- ions (ranging from 100 to 350 µM). The self-assembling of pyrene derivative by forming pyrene-pyrene* coordination with Cu2+ and pyrene derivative rods break into smaller pieces by forming benzoxazole ring in CN- ions are conformed by AFM and IR spectra.
Abstract I
摘要 II
誌謝 III
Contents IV
List of Figures VI
List of Table VIII
Chapter 1:Introduction
1.1 Introduction and Motivation 1
Chapter 2:Property of OTFT-based sensor
2.1 Introduction 5
2.2 The Device Configuration and Physical Operation 8
2.2 The Charge Carrier Transport 10
2.3 The Significant Parameter Extraction 11
Chapter 3:Experimental Details
3.1 Instruments 16
3.1.1 UV-Ozone Machine 16
3.1.2 Thermal Evaporation 18
3.1.3 Atomic Force Microscopy (AFM) 20
3.1.4 Infrared(IR) Spectrometer 23
3.2 Fabrication process 23
3.2.1 Materials 23
3.2.2 Device Fabrication 24
3.2.3 Device Characterization and Analyses 25
3.2.4 Sensor Devices Measurement 25
Chapter 4:Result and Discussion
4.1 Pentacene/P1 Device Response 26
4.2 Sensitivity and Selectivity Studies for Cu2+ 29
4.3 Sensitivity and Selectivity Studies for CN- 35
4.4 Sensing Mechanisms 38
Chapter 5:Conclusion
5.1 Conclusion 43
References 44
[1] H. Yan, Z. H. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler and A. Facchetti, Nature. 2009, 457, 679.
[2] A. Facchetti, Chem. Mater. 2011, 23, 733.
[3] M, Ramesh, H-C, Lin and C-W, Chu J. Mater. Chem. 2012, 22, 16506.
[4] Q. Zhang and V. Subramanian, Biosens. Bioelectron. 2007, 12, 3182.
[5] M. C. Linder and M. Hazegh-Azam, Am. J. Clin. Nutr. 1996, 63, 797S.
[6] E. Forzani, H. Q. Zhang, W. Chen and N. J. Tao, Environ. Sci. Technol. 2005, 39, 1257.
[7] B. Vennesland, E. E. Comm, C. J. Knownles, J. Westly and F. Wissing, Cyanide in Biology, Academic Press, London 1981.
[8] K. W. Kulig, Cyanide Toxicity, U.S. Department of Health and Human Services, Atlanta, GA 1991.
[9] Guidelines for Drinking-Water Quality, World Health Organization, Geneva 1996.
[10] B. Ding, Y. Si, X. Wang, J. Yu, L. Feng and G. Sun, J. Mater. Chem. 2011, 21, 13345.
[11] T. T. Christison and J. S. Rohrer, J. Chromatogr. A. 2007, 31, 1155.
[12] G. Qian, X. Li and Z.Y. Wang, J. Mater. Chem. 2009, 19, 522.
[13] F. Buth, A. Donner, M. Sachsenhauser, M. Stutzmann and J. A. Garrido, Adv. Mater. 2012, 24, 4511.
[14] M. L. Hammock, A. N. Sokolov, R. M. Stoltenberg, B.D. Naab and Z. Bao, ACS Nano. 2012, 6, 3100.
[15] M. Ramesh, H-C. Lin and C-W. Chu, Biosens. Bioelectron. 2013, 42, 76.
[16] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang and X. W. Liang, Adv. Funct. Mater. 2007, 17, 3639.
[17] H. Dong, C. Wang and W. Hu, Chem. Commun. 2010, 46, 5211.
[18] S. Karuppannan and J-C. Chambron, Chem. Asian J. 2011, 6, 964.
[19] M. A. Cejas and F. M. Raymo, Langmuir. 2005, 21, 5795.
[20] M. E. Østergaard and P. J. Hrdlicka, Chem. Soc. Rev. 2011, 40, 5771.
[21] Z. Wang, P. Huang, A. Bhirde, A. Jin, Y. Ma, G. Niu, N. Neamati and X. Chen, Chem. Commun. 2012, 48, 9768.
[22] J. Kwon, J-P. Hong, S. Noh, T-M. Kim, J-J. Kim,C. Lee, S. Lee and J-I. Hong, New J. Chem. 2012, 36, 1813.
[23] L. Giribabu, R. K. Kanaparthi and V. Velkannan, The Chemical Record. 2012, 12, 306.
[24] L. Basabe-Desmonts, D. N. Reinhoudt and M. Crego-Calama, Chem. Soc. Rev. 2007, 36, 993.
[25] J. M. Kim, S. J. Min, S. W. Lee, J. H. Bok and J. S. Kim, Chem. Commun. 2005, 3427.
[26] G. Horowitz, Adv. Mater. 1998, 10, 365.
[27] H. Sirringhaus, N. Tessler, R. H. Friend, Science. 1998, 280, 1741.
[28] F. Maddalena, M. J. Kuiper, B. Poolman, F. Brouwer, J. C. Hummelen, D. M. de Leeuw, B. De Boer, P. W. M. Blom, J. Appl. Phys. 2010, 108, 124501.
[29] Q. T. Zhang, V. Subramanian, Biosens. Bioelectron. 2007, 22, 3182.
[30] M. E. Roberts, S. C. B. Mannsfeld, N. Queralto, C. Reese, J. Locklin, W. Knoll, Z. N. Bao, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 12134.
[31] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 4835.
[32] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science. 2000, 290, 2123.

[33] L. Peng and Y. Feng, Adv. Mater. 2012, 24, 34.
[34] John R. Vig, J. Vac. Sci. Technol. A. 1985, 3, 1027.
[35] S. R. Forrest, J. Am. Chem. Soc. 1997, 97, 1793.
[36] R. Schlesser, “Organic electro-optic crystals and thin films: optical characterization and molecular bean epitaxy”, PhD thesis, ETH Zurich 1996.
[37] D. L. Smith, “Thin-Film Deposition: Principle and Practice”, McGraw-Hill, New York, 1995.
[38] G. Binnig, C. F. Quated, Ch. Gerber, Phys. Rev. Lett. 1986, 56, 930.
[39] T. R. Albrecht, S. Akamine, T. E. Carver, C. F. Quate, J. Vac. Sci. A. 1990, 8, 3386.
[40] H. Klauk, M. Halik, U. Zschieschang, G. Schmid and W. Radlik, J. Appl. Phys. 2002, 92, 5259.
[41] M. Shellaiah, Y-H. Wu, A. Singh, M. V. R. Raju, H-C. Lin, J. Mater. Chem. A. 2013, 1, 1310.
[42] L. Zang, D. Wei, S. Wang, S. Jiang, Tetrahedron. 2012, 63, 636
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *