|
[1] B. Razavi, “RF microelectronics,” Prentice-Hall, Nov. 1997. [2] A. Dec and K. Suyama, “Micromachined Electro-Mechanically Tunable Capacitors and Their Applications to RF IC’s,” IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, pp. 2587-2596, Dec. 1998. [3] P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE J.Solid-State Circuits, Vol. 35, No. 6, pp. 905-910, Jun. 2000. [4] H. Chang, S. Kim, C. Lim, and T. Yun, “Wide tuning range CMOS millimeter-wave VCO using resistors-added MOSFET varactor,” Microw. Opt. Tech. Lett., Vol. 54, No. 8, pp. 1776-1782, Aug. 2012. [5] L. Lu, H. Hsieh, and Y. Liao, “ A wide tuning-range CMOS VCO with a differential tunable active inductor,” IEEE Trans. Microw. Theory Tech. Vol. 54, No. 9, pp. 3462-3468, Sep. 2006. [6] A. Tanabe, K. Hijioka, H. Nagase, and Y. Hayashi, “ A novel variable inductor using a bridge circuit and its application to a 5-20 GHz tunable LC-VCO,” IEEE J.Solid-State Circuits, Vol. 46, No. 4, pp. 883-893, Apr. 2011. [7] C. Yu, W. Chen, C. Wu, and T. Lu, “A 60-GHz, 14% tuning range, multi-band VCO with a single variable inductor,” IEEE Asia. Solid-State Circuits Conf., pp. 129-132, Nov. 2008. [8] T. Lu, C. Yu, W. Chen, and C. Wu, “ Wide tuning range 60 GHz VCO and 40 GHz DCO using single variable inductor,” IEEE Trans. circuits and systems I: Regular Papers, Vol. 60, No. 2, pp. 257-267, Nov. 2012. [9] T. Lee and A. Hajimiri, “Oscillator phase noise: A tutorial,” IEEE J.Solid-State Circuits,Vol. 35, No. 3, Mar. 2000. [10] A. Abidi, “How phase noise appears in oscillators,” in Analog Circuit Design-RF Analog-to-Digital Converters;Sensor and Actuator Interfaces; Low-Noise scillators, PLLs and Synthesizers. Kluwer Academic, Boston, November 1997, pp. 428. [11] M. Kraemer, D. Dragomirescu, R. Plana, “A high efficiency differential 60 GHz VCO in a 65 nm CMOS technology for WSN applications,” IEEE Microw. Wireless Compon. Lett., Vol.21, No. 6, pp. 314–316, Jun. 2011. [12] R. Liu, H. Chang, C. Wang, and H. Wang, “A 63GHz VCO using a standard 0.25μm CMOS process,” in Int. Solid-State Circuits Conf. Tech. Dig., pp. 446–447, Feb. 2004. [13] H. C. Chiu and C. P. Kao, “A wide tuning range 69 GHz Push-Push VCO using 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, pp. 97-99, Feb. 2010. [14] H. Hsieh, and L. Lu, “A V-band CMOS VCO with an admittance-transforming cross-coupled pair,” IEEE J. Solid-State Circuits, vol. 44, pp. 1689–1696, Jun. 2009. [15] Y. Kuo, J. Tsai, T. Huang, and H.Wang, “A V-band VCO using fT-doubling technique in 0.18-μm CMOS,” Asia-Pacific Microwave Conference, pp.251-254, Dec. 2011. [16] J. Borremans, M. Dehan, K. Scheir, M. Kuijk, and P. Wambacq,” VCO design for 60 GHz applications using differential shielde inductors in 0.13um CMOS,” IEEE Radio Freq. Int. Circuits Symp., pp. 135-138, Apr. 2008. [17] H. Chiou, I. Chen, and W. Chen, “ High gain V-band active-integrated antenna transmitter using Darlington pair VCO in 0.13um CMOS process,” IEEE Electron. Lett., Vol. 46, No. 5, pp.321-322, Mar. 2010. [18] K. Tang, S. Leung, N. Tieu, P. Schvan, and S. Voinigescu,” Frequency scaling and topology comparison of illimeter-wave CMOS VCOs,” IEEE Compound Semiconductor Int. Circuit Symp., pp. 55-58, Nov. 2006. [19] T. Luo and Y. Chen,” A sub-1V low power V-band CMOS VCO with self-body bias,” Asia-Pacific Microwave Conf., pp. 1-4, Dec. 2007. [20] D. Huang, W. Hant, N. Wang, T. Ku, Q. Gu, R. Wong, F. Chang, “A 60GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size, loss and noise reduction,” IEEE Int. Solid-State Circuits, pp. 1218–1227, Feb. 2006. [21] S. Chai, J. Yang, B. Ku, and S. Hong, “ Millimeter wave CMOS VCO with a high impedance LC tank,” Asia-Pacific Microwave Conf., pp. 545-548, May 2010. [22] L. Li, P. Reynaert, and M. Steyaert,“ Design and analysis of a 90 nm mm-wave oscillator using indcutive-division LC tank,” IEEE J. Solid-State Circuits, Vol. 44, No. 7, pp. 1950-1958, Jul. 2009. [23] H. Hsieh, Y. Chen, and L. Lu, “A millimeter-wave CMOS LC-tank VCO with an admittance-transforming technique,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9,pp. 1854–1861, Sep. 2007. [24] A. Ismail, and A. Abidi, “CMOS differential LC oscillator with suppressed up-converted flicker noise,” IEEE Int. Solid-State Circuits Conf., vol. 1, pp. 98–99, Feb. 2003. [25] A. Mazzanti and P. Andreani,” Class-C Harmonic COMS VCOs, with a general result on phase noise,” IEEE J. Solid-State Circuits, Vol. 43, No. 12, pp. 2716-2729, Dec. 2008. [26] M. Win, D. Dardari, A. Molisch, W. Wiesbeck, and J. Zhang,” History and applications of UWB,” Proc. of IEEE, Vol. 97, No. 2, pp. 198-204, Feb. 2009. [27] D.L. Ash, “A Comparison Between OOK/ASK and FSK Modulation Techniques For Radio Links”, RF Monolithics, inc., Dallas, Texas. [28] Tom McDermott, Wireless Digital Communications: Design and Theory, Tucson Amateur Packet Radio Corporation, Tucson,Arizona, 1996. [29] J. Jung, S. Zhu, P. Liu, Y. Chen, and D. Heo,“22-pJ/bit energy-efficient 2.4-GHz implantable OOK transmitter for wireless biotelemetry systems: In vitro experiments using rat skin-mimic,” IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, pp. 4102-4111, Dec. 2010. [30] T. Phan, J. Lee, V. Krizhanovskii, S. Han, and S. Lee,” A 18-pJ/Pulse OOK CMOS transmitter for multiband UWB impulse radio,” IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 9, pp. 688-670, Sep. 2007. [31] M. Crepaldi, C. Li, K. Dronson, J. Fernandes, and P. Kinget,” An ultra-low-power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation,” IEEE Int. Solid-State Circuits Conf., pp. 226-227, Feb. 2010. [32] G. S. Byun, Y. Kim, J. Kim, S. W. Tam, and M. C. F. Chang, “An energy-efficient and high-speed mobile memory I/O interface using simultaneous bi-directional dual (Base+RF)-band signaling,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 117-130, Jan. 2012. [33] J. Lee, Y. Chen, and Y. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” in J. Solid-State Circuits. pp. 264–275, Feb. 2010. [34] J. Lee Y. Huang, Y. Chen, H. Lu, and C. Chang,“ A low-power fully integrated 60GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE Int. Solid-State Circuits Conf., pp. 316-318, Feb. 2009. [35] E. Juntunen, M. Leung, F. Barale, A. Rachamadugu, D. Yeh, B. Perumana, P. Sen, D. Dawn, S. Sarkar, S. Pinel, and J. Laskar, “A 60-GHz 38-pJ/bit 3.5-Gb/s 90-nm CMOS OOK digital radio,” IEEE Trans. on Microwave Theory and Tech., vol. 58, pp. 348–355, Feb. 2010. [36] A. Oncu, K. Takano, and M. Fujishima,” 8Gbps CMOS ASK modulator for 60GHz wireless communication,” IEEE Asia. Solid-State Circuits Conf., pp. 125-128, Nov. 2008. [37] H. Chang, M. Lei, C. Lin, Y. Cho, Z. Tsai, and H. Wang,” A 46-GHz direct wide modulation bandwidth ASK modulator in 0.13-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 9, pp. 691-693, Sep. 2007 [38] J. Lee, and C. Park, “60-GHz gigabits-per-second OOK modulator with high output power in 90-nm CMOS,” Trans. circuits and systems II : Express Brifes , vol. 58, pp.249-253, May 2011. [39] Y. Lo, C. Yui, and J. Kiang,” OOK/BPSK-modulated impulse transmitters integrated with leakge-canclling circuit,” IEEE Trans. on Microwave Theory and Tech., Vol. 61, No. 1, pp. 218-224, Jan. 2013.
|