帳號:guest(3.15.1.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅偉唐
作者(外文):Lo, Wei-Tang
論文名稱(中文):三氯氧磷退火處理原子層沉積二氧化矽於碳化矽金氧半場效電晶體之可靠度研究
論文名稱(外文):Study on the Reliability of POCl3 Annealed ALD SiO2 for 4H-SiC MOSFETs
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):魏拯華
李坤彥
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063539
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:57
中文關鍵詞:碳化矽電容金氧半場效電晶體三氯氧磷退火
相關次數:
  • 推薦推薦:0
  • 點閱點閱:753
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
碳化矽金氧半場效電晶體的場效遷移率使用三氯氧磷退火已經被證明可以明顯的提升至 80-90 cm2/V-s,然而許多文獻指出磷摻雜的絕緣層會有著穩定性與可靠度的問題。因此本篇論文目的是使用新方法來檢視三氯氧磷退火後的可靠度。
在論文中我們使用的新方法是利用原子層沉積的方式沉積閘極絕緣層並期望能夠改善可靠度的問題。實驗結果原子層沉積氧化層在矽上有著不錯的可靠度,其崩潰電場平均可達到8MV/cm,TDDB在150˚C下施加電場7MV/cm可達1420秒。在碳化矽金氧半電容方面,利原子層沉積氧化層經過三氯氧磷退火相對於高溫氧化接著使用三氯氧磷退火來的更穩定。在碳化矽金氧半場效電晶體方面,高溫氧化加三氯氧磷退火的元件其場效遷移率約為 66 cm2/V-s 。然而,原子層沉積氧化層製作出來的金氧半場效電晶體的場效遷移率只有 6-12 cm2/V-s 左右。
Abstract
The field effect mobility μFE of SiC MOSFETs with POCl3 annealed gate oxide has been proven to be significantly enhanced to 80-90 cm2/V-s. However, literature shows that phosphorus-doped dielectric layer has stability and reliability problems. Therefore, the purpose of this thesis is to inspect the reliability of POCl3 annealed with novel approaches.
In this thesis, our approach is to deposit a gate dielectric with ALD and the reliability problems are expected to improve. From experiment results, ALD oxide layer shows good reliability on Si, and the average breakdown field is approximately 8 MV/cm. The extracted TDDB stressing at 7MV/cm and 150℃ is 1420 sec. For the SiC MOSC, the ALD oxide layer followed by POCl3 annealing is more stable than thehigh temperature dry oxide followed by POCl3 annealing. For the SiC MOSFET, the μFE of high temperature dry oxidation followed by POCl3 annealing is 66 cm2/V-s. However, the μFE of MOSFET with an ALD oxide layer is only 6-12 cm2/V-s
目錄
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
第一章 序論 1
1.1 寬能隙材料─碳化矽 1
1.2 碳化矽晶格結構 2
1.3 碳化矽的閘極氧化層 3
1.4 原子層沉積二氧化矽 4
1.5 可靠度 6
1.6 研究動機與論文大鋼 8
第二章 製程實驗 12
2.1碳化矽電容製程實驗 12
2.2 碳化矽電晶體製程實驗 13
2.2.1 一般清潔 (Initial cleaning) 13
2.2.2 對準鍵 (Alignment key) 14
2.2.4 基極離子佈值 (Body implantation) 14
2.2.5 汲極/源極離子佈值 (Source/drain implantation) 15
2.2.6 電性活化 (Electrical activation) 15
2.2.7 閘極絕緣層 (Gate dielectric) 16
2.2.8 汲極,源極與基極接觸金屬 (Source, drain and body contact) 16
2.2.9 閘極與墊金屬 (Gate and Pad metal ) 17
2.3 電性分析 17
2.3.1 MOSC 17
2.3.2 MOSFET 18
對準鍵 (Alignment key) 21
基極離子佈值 (body implantation) 21
汲極/源極離子佈值 (Source/Drain implantation) 21
第三章 實驗量測結果與討論 26
3.1 原子層沉積二氧化矽測試實驗 26
3.2 SiC MOSC 27
3.3 SiC MOSFET 31
第四章 結論與未來改善 54
References 54
References
[1] L. M. Tolbert, B. Ozpineci, S. K. Islam, M. S. Chinthavali, “Wide BandGap Semiconductors For Utility Applications,” Naval Research Reviews, 1999.
[2] C. M. Zetterling,“Process Technology for Silicon Carbide Devices,” EMIS processing series IEEE, 2002.
[3] G. R. Fisher and P. Barnes, “Toward a Unified View of Polytypism in Silicon Carbide,” Phil. Mag. B, vol. 61, no. 2, pp. 217–236, Feb.1990.
[4] A. R. Powell and L. B. Rowland, “SiC Materials-Progress, Status, and Potential Roadblocks,” Proceedings of the IEEE, vol. 90, no. 6, June 2002
[5] L. Lipkin and J. Palmour, “Insulator Investigation on SiC for Im-proved Reliability,” IEEE Transactions on Electron Devices, Vol. 46, No. 3, pp. 525-532, 1999
[6] C. Y. Lu, J. A. Cooper, T. Tsuji, G. Chung, J. R. Williams, K McDonald, and L. C. Feldman,” Effect of Process Variations and Ambient Temperature on Electron Mobility at the SiO2/4H-SiC Interface,” IEEE Transactions on Electron Devices, VOL. 50, NO. 7, JULY 2003
[7] D. Okamoto, H. Yano, K. Hirata, T. Hatayama, and T. Fuyuki, “Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide,” IEEE Electron Device Lett., vol. 31, no. 7, Jul. 2010
[8] D. Hausmann, J. Becker, S. Wang, R. G. Gordon, “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates,” Science, vol.298, pp.402, 2002
[9] Y.K. Sharma, A.C. Ahyi, T. I. Smith, X. Shen, S. T. Pantelides, X. Zhu, L.C. Feldman, J. Rozen, J. R. Williams, “Phosphorous pas-sivation of the SiO2/4H–SiC interface,” Solid-State Electronics, Oc-tober 2011.
[10] Y.K. Sharma, A.C. Ahyi, T. I. Smith, X. Shen, S. T. Pantelides, X. Zhu, J. Rozen, L.C. Feldman, J.R. Williams, Y Xu, and E. Garfunkel, “The Effects of Phosphorus at the SiO2/4H-SiC Interface,” Materials Science Forum, Vols. 717-720, pp 743-746, May 2012.
[11] R Morishita, H Yano, D Okamoto, T Hatayama, and T Fuyuki, “Effect of POCl3 Annealing on Reliability of Thermal Oxides Grown on 4H-SiC,” Materials Science Forum, Vols. 717-720, pp 739-742, May 2012.
[12] A. Lelis, D. Habersat, F. Olaniran, B. Simons, J.McGarrity, F. B.McLean, and N. Goldsman, “Time-dependent bias stress-induced instability of SiC MOS devices,” Proc. Mater. Res. Soc. Symp., vol. 911,pp. 335–340,2006
[13] R. Singh and A. R. Hefner, “Reliability of SiC MOS devices,” Sol id-State Electron., vol. 40, no. 10/11, pp. 1717–1720, Oct./Nov. 2004
[14] Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, ”Elec-tronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001),“ Journal of Applied Physics, vol. 96, no.1, 2004.
[15] J Rozen, ” ELECTRONIC PROPERTIES AND RELIABILITY OF THE SiO2/SiC INTERFACE, “ Ph.D. Thesis - ETD - Vanderbilt University, 2008.
[16] D Choi, B. K. Kim, K. B. Chung, J. S. Park, ” Studies on optical, chemical, and electrical properties of rapid SiO2 atomic layer deposition using tris(tert-butoxy)silanol and trimethyl-aluminum, “ Materials Research Bulletin, vol. 47, pp 3004-3007, 2012.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *