帳號:guest(18.221.213.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭柏瑾
作者(外文):Po-Chin Peng
論文名稱(中文):P型氮化鎵MOS-HEMT模擬與設計
論文名稱(外文):Simulation and Design of P-GaN MOS-HEMT
指導教授(中文):黃智方
指導教授(外文):Chih-Fang Huang
口試委員(中文):謝光前
黃宗義
口試委員(外文):Kuang-Chien Hsieh
Tsung-Yi Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063537
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:55
中文關鍵詞:氮化鎵金氧半高電子遷移率電晶體
外文關鍵詞:GaNMOS-HEMT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1155
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本篇論文中,首先利用TCAD擬和氮化鋁鎵/氮化鎵異質結構的Transmission Line Model(TLM)模型,再進一步模擬自熱效應觀察元件內部現象。利用建立好的模型模擬氮化鋁鎵/氮化鎵雙金屬蕭基二極體,其電流誤差在±10%。
此外設計P型氮化鎵MOS-HEMT達到常關型元件,使用氧化鋁材料作為閘極介電質可降低漏電流,藉由調變通道長度及摻雜濃度可有效調整元件達最佳化。加入本質氮化鎵當作通道,可以提升特性元件,大幅降低臨界電壓達到更高的飽和電流,並估算在通道長度為0.4µm且閘極-汲極長度為10µm的本質氮化鎵通道MOS-HEMT,導通電阻為3.7 mΩ•cm2,而通道導通電阻為0.41mΩ•cm2,佔總阻值的11%,最大阻值來源於閘極-汲極端約1.75 mΩ•cm2佔總阻值的47%。
In this thesis, we used TCAD for fitting AlGaN/GaN heterojunction Transmission Line Model (TLM) I-V characteristics. A physics-based model of self-heating is included in TCAD simulations to investigate the internal device behavior. A dual metal Schottky Barrier Diode (SBD) is also simulated with the constructed models. The fitting errors of less than ±10% for DC I-V characteristics in both cases have been achieved.
Another topic of this thesis is to design a normally-off p-GaN MOS-HEMT. A p-GaN MOS-HEMT with Al2O3 as the gate dielectric can significantly reduce the gate leakage current and achieve normally-off operation. To build the best performing device we optimized the channel length and doping concentration of the p-GaN. A p-GaN MOS-HEMT performance can also be improved by adding an i-GaN layer as the channel layer. Compared with a p-GaN MOS-HEMT, the i-GaN layer design reduced the threshold voltage and increased the saturation current. The i-GaN channel MOS-HEMT with a channel length of 0.4µm and a gate-drain length of 10µm shows a specific on-resistance as low as 3.7mΩ•cm2. The channel region resistance is 0.41mΩ•cm2 which contributes about 11% of the total resistance. The largest part of the total resistance is 1.75mΩ•cm2 from the gate-drain distance and it contributes about 47%.
目錄
中文摘要…………………………II
Abstract…………………………III
致謝…………………………IV
目錄…………………………VI
圖目錄…………………………IX
表目錄…………………………XII
第一章 序論
1.1前言……………………………………………1
1.2文獻回顧………………………………………3
1.3論文架構………………………………………10
1.3.1研究方向簡介………………………………10
1.3.2論文架構……………………………………10
第二章 材料介紹與物理模型
2.1氮化鋁鎵/氮化鎵異質結構…………………12
2.1.1自發性極化效應……………………………12
2.1.2壓電性極化效應……………………………13
2.1.3二維電子氣…………………………………15
2.2蕭基位障影響…………………………………16
2.3表面狀態影響…………………………………17
2.4自熱效應………………………………………18
第三章 擬和氮化鋁鎵/氮化鎵雙金屬蕭基二極體元件特性
3.1元件結構………………………………………19
3.2物理模型………………………………………21
3.3參數對能帶影響………………………………23
3.4建立TLM模型…………………………………24
3.4.1 Pulse量測………………………………24
3.4.2 DC量測……………………………………25
3.5擬和蕭基二極體實驗數據……………………28
第四章P型氮化鎵MOS-HEMT設計與分析
4.1 P型氮化鎵MOS-HEMT結構…………………32
4.2 物理模型……………………………………33
4.2.1 通道遷移率………………………………33
4.2.2 不完全游離模型…………………………35
4.3 正向電性分析………………………………37
4.3.1 通道長度的影響…………………………37
4.3.2 P型氮化鎵摻雜的影響…………………38
4.3.3溫度的影響………………………………41
4.3.4導通電阻分析……………………………43
4.4 本質氮化鎵對臨界電壓的影響…………45
第五章 結論與未來工作
參考文獻
[1]J. Liu, Y. G. Zhou, R. M. Chu, Y. Cai, K. J. Chen, and K. M. Lau, “Highly Linear Al0.3Ga0.7N-Al0.05Ga0.95N-GaN Composite- Channel HEMTs,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 145–147, Mar. 2005.
[2]T. P. Chow and R. Tyagi, “Wide Bandgap Compound Semiconductors for Superior High-Voltage Unipolar Power Devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, Aug. 1994.
[3]F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors,” Applied Physics Lett., vol. 73, no. 26, pp. 3893–3895, Dec. 1998.
[4]M. A. Khan, J. N. Kuznia, J. M. V. Hove, N. Pan, and J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1-xN heterojunctions,” Applied Physics Lett., vol. 60, no. 24, pp. 3027–3029, Jun. 1992.
[5]M. A. Khan, M.S. Shur, and Q. Chen, “High transconductance AlGaN/GaN optoelectronic heterostructure field effect transistor,” IEEE Electronics Lett., vol. 31, no. 24, pp. 2130–2131, Nov. 1995.
[6]M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M.S. Shur, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor,” IEEE Electron Devices Lett., vol. 21, no. 2, pp. 63–65, Feb. 2000.
[7]P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN metal-oxide-semiconductor high electron mobility transistor with atomic layer deposited Al2O3 as gate dielectric,” Applied Physics Lett., vol. 86, no. 6, Jan. 2005.
[8]X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M.S. Shur, “Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate,” IEEE Electron Lett., vol. 36, no. 8, pp. 753–754, Apr. 2000.
[9]Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207–2215, Sep. 2006.
[10]W. Huang, Z. Li, T.P. Chow, Y. Niiyama, T. Nomura, and S. Yoshida, “Enhancement-mode GaN Hybrid MOS-HEMTs with Ron,sp of 20 mΩ-cm2,” Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC's(ISPSD), pp. 295–298, 2008.
[11]S. Sugiura, Y. Hayashi, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, “Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with HfO2 gate insulator,” Solid-State Electronics, vol. 54, no. 1, pp. 79–83, Jan. 2010.
[12]S. L. Selvaraj, K. Nagai, and T. Egawa, “MOCVD grown normally-OFF type AlGaN/GaN HEMTs on 4 inch Si using p-InGaN Cap Layer with High Breakdown,” Device Research Conference, pp. 135–136, Jun. 2010.
[13]M. Kuroda, T. Ueda, and T. Tanaka, “Nonpolar AlGaN/GaN Metal-Insulator-Semiconductor Heterojunction Field-Effect Transistors With a Normally Off Operation,” IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 368–372, Feb. 2012.
[14]T. Fujiwara, R. Yeluri, D. Denninghoff, J. Lu, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Enhancement-Mode m-plane AlGaN/GaN Heterojunction Field-Effect Transistors with +3 V of Threshold Voltage Using Al2O3 Deposited by Atomic Layer Deposition,” Appl. Phys. Express, 2011.
[15]N. Maeda, M. Hiroki, S. Sasaki, and Y. Harada “High-Temperature Characteristics in Recessed-Gate AlGaN/GaN E-mode HFETs with Enhanced-Barrier Structures,” J. J. Appl. Phys., vol. 52, no.8, Aug. 2013.
[16]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, Mar. 1999.
[17]E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, “Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 71, no. 19, pp. 2794–2796, Nov. 1997.
[18]D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin, and H. X. Jiang, “Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction,” J. Appl. Phys., vol. 87, no. 2, pp. 801–804, Jan 2000.
[19]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, no. 8, pp. 4520–4526, Oct. 1999.
[20]J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 77, no. 2, pp. 250–252, Jul. 2000.
[21]R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Devices Lett., vol. 19, no. 3, pp. 89–91, Mar. 1998.
[22]J. D. Albrecht, R. P. Wang, P. P. Ruden, M. Farahmand, and K. F. Brennan, “Electron transport characteristics of GaN for high temperature device modeling,” J. Appl. Phys., vol. 83, no. 9, pp. 4777–4781, May 1998.
[23]M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht, and P. P. Ruden, “Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries and Ternaries,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 535–542, Mar. 2001.
[24]W. Huang, T. P. Chow, Y. Niiyama, T. Nomura, and S. Yoshida, “Experimental Demonstration of Novel High-Voltage Epilayer RESURF GaN MOSFET,” IEEE Electron Devices Lett., vol. 30, no. 10, pp. 1018–1020, Oct. 2009.
[25]J. W. Huang, T. F. Kuech, H. Lu, and I. Bhat, “Electrical characterization of Mg-doped GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 68, no. 17, pp. 2392–2394, Apr. 1996.
[26]R. C. Jaeger and F. H. Gaensslen, “Simulation of Impurity Freezeout Through Numerical Solution of Poisson‘s Equation with Application to MOS Device Behavior,” IEEE Trans. Electron Devices, vol. 27, no. 5, pp. 914–920, May 1980.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *