帳號:guest(3.141.192.115)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳宜屏
作者(外文):Chen, I-Ping
論文名稱(中文):快速熱處理硫化製程對射頻濺射沉積的銅鋅錫硫化物(CZTS)薄膜之研製
論文名稱(外文):Rapid Thermal Sulfurization Process of RF-sputter Deposited Cu2ZnSnS4 Thin films
指導教授(中文):吳孟奇
口試委員(中文):劉埃森
劉柏村
楊智超
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063536
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:75
中文關鍵詞:CZTS.濺鍍機(Sputter).RTP(快速熱退火).硫化物
相關次數:
  • 推薦推薦:0
  • 點閱點閱:773
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在此研究中,將射頻濺鍍機(RF-sputter)成長出的金屬前驅物層(glass/mo/ZnSn/Cu),放入緊密式的石墨盒中,填入適量地硫粉後,利用快速熱退火系統(RTP)進行高溫硫化製程,達到無毒且快速的CZTS薄膜製作。利用調整與設計實驗參數來成長出高品質的CZTS薄膜,並進一步探討與分析硫化製程參數對薄膜特性的影響。此外,探討不同銅含量的金屬前驅物層對薄膜特性的影響,其組成比控制在Cu/Zn+Sn=0.7~1.2範圍內,發現出薄膜中銅的含量對於CZTS 薄膜的特性有很大的影響。從中利用掃描式電子顯微鏡(SEM)、感應耦合電漿質譜分析儀(ICP-MS)、X光繞射儀(XRD)、拉曼光譜儀、紫外光/可見光光譜儀(UV/VIS)和霍爾量測等儀器,分析薄膜的形態、組成比、結構、電性和能隙等薄膜特性。
使用無毒快速熱退火製作的CZTS薄膜,透過XRD的分析結果,其擁有(112), (2 2 0)/(204) and (312)平面的訊號,顯示製作出Kesterite結構的CZTS薄膜,且能隙介於1.42eV與1.54之間,則吸收係數為超過104cm−1以上,此材料特性,非常適合作為太陽能吸收層的材料。
銅缺乏(Cu-poor)的金屬前驅物製作出最佳特性的CZTS太陽能電池,其組成比為Cu/Zn+Sn=0.73,主要為銅缺乏的CZTS 薄膜擁有較佳的薄膜品質與特性,其太陽能結構為Glass/Mo/CZTS/CdS/I-ZnO/ITO/Al grid.製作出短路電流(Jsc) 為10.37 mA/cm2、開路電壓(Voc)為200 mV,填充因子(FF)為40.3% 和效率0.85%的CZTS薄膜太陽能電池,此結果證明無毒且快速的熱退火硫化製程為有潛力與價值性的CZTS製作技術。
中文摘要....................................................I
Abstract.................................................III
Acknowledgements..........................................IV
List of Figure.............................................V
List of Table.............................................IX
Chapter 1 Introduction.....................................1
1-1 Introduction...........................................1
1-2 Categories of solar cells..............................2
1-3 Thin film solar cells..................................3
1-4 Motivation.............................................5
Chapter 2 Cu2ZnSnS4........................................7
2-1 Structure and properties of CZTS material..............7
2-1-1 Kesterite-related compounds of CZTS..................8
2-2 CZTS thin film solar cell.............................10
2-2-1 Currents in a diode.................................10
2-2-2 The equivalent circuit for a solar cell.............11
2-2-3 The I-V curve of the illuminated solar cells........13
2-2-4 Secondary phase.....................................15
Chapter 3 Experimental detail.............................19
3-1 CZTS solar cell structure and fabricated process......19
3-2 Experiment instrument.................................28
3-2-1 RF-Sputter..........................................28
3-2-2 RTP.................................................29
3-3 Analysis techniques...................................31
3-3-1 Scanning Electron Microscopy (SEM)..................31
3-3-2 Energy dispersive spectrometers (EDS)...............34
3-3-3 Inductively coupled plasma mass spectrometry(ICP-MS).......................................................35
3-3-4 X-Ray Diffraction (XRD).............................37
3-3-5 Raman...............................................38
3-3-6 Hall measurements...................................38
Chapter 4 Results and discussion..........................41
4-1 Deposited method of precursor.........................41
4-1-1 Metallic precursor type.............................41
4-1-2 Composition controlling of Metallic precursor.......45
4-2 Pre-annealing for metallic precursors.................47
4-3 Sulfurization process.................................49
4-4 Effect of Cu concentration............................58
4-4-1 Compositions of metallic precursors.................58
4-4-2 Structure and second phase analysis.................59
4-4-3 Compositions of sulfurized films.....................63
4-4-4 Morphological characterization......................64
4-4-5 Optical properties..................................67
4-4-6 Electrical characterization.........................69
4-6 Solar device of Cu2ZnSnS4 thin film...................70
Chapter 5 Conclusions.....................................72
Reference.................................................73
[1] Minlin Jiang, and Xingzhong Yan, " Cu2ZnSnS4 Thin Film Solar Cells:Present Status and Future Prospects," ITECH, pp. 108–143, 2013.

[2] Hendrik Flammersberger," Experimental study of Cu2ZnSnS4 thin films for solar cells, " UPPSALA UNVIERSITET, December 2010.

[3] Karthik Ramasamy, w Mohammad A. Malik, and Paul O’Brien, "Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells," Chem. Commun., vol 48, pp. 5703–5714, 2012.

[4] Diego Colombara,"Investigation of Chalcogenide Absorber Materials for Photo -voltaic Applications, "University of Bath, June 2012.

[5] Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey, and Supratik Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber,"PROGRESS IN PHOTOVOLTAICS: RESEARCH & APPLICATIONS, Appl. 2011.

[6] Teodor K. Todorov, Jiang Tang, Santanu Bag, Oki Gunawan , Tayfun Gokmen ,Yu Zhu, and David B. Mitzi, " Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells," Adv. Energy Mater. , pp. 34–38, 2013.

[7] David B. Mitzi n , Oki Gunawan, Teodor K. Todorov, Kejia Wang, and Supratik Guha, "The path towards a high-performance solution-processed kesterite solar cell, "Solar Energy Materials & Solar Cells, 2011.

[8] Chen, S., Gong, X. G., Walsh, A., & Wei, S. (2009). Appl. Phys.Lett, 041-903.

[9] Mincryst information card-KESTERITE(Card No.2333). http://database.ase.iem.ac.ru /mincryst/s_carta.php? KESTERITE+2333(accessed Feb 26,2010).

[10] A. Weber, I.Kötschau, and H.W. Schock, "In-situ EDXRD investigation on the formation of Cu2ZnSnS4 thin films, Hahn-Meitner-Institut.

[11] Scragg, J. J., "Studies of Cu2ZnSnS4 films prepared by sulphurisation of electrodeposited precursors, " University of Bath, Diss., 2010.

[12] Yukiko Kamikawa-Shimizu, Shuuhei Shimada, Manabu Watanabe, Akimasa Yamada, Keiichiro Sakurai, Shogo Ishizuka, Hironori Komaki, Koji Matsubara, Hajime Shibata, Hitoshi Tampo, Keigou Maejima, and Shigeru Niki, "Effects of Mo back contact thickness on the properties of CIGS solar cells, "Phys. Status Solidi A,vol 206, pp.1063–1066,2009.

[13] Kyung Hoon Yoon, Seok Ki Kim, R. B. V. Chalapathy, Jae Ho Yun, Jeong Chul Lee, and Jinsoo Song, "Characterization of a Molybdenum Electrode Deposited by Sputtering and Its Effect on Cu(In,Ga)Se2 Solar Cells.

[14] http://en.wikipedia.org/wiki/Indium_tin_oxide

[15] http://en.wikipedia.org/wiki/Rapid_thermal_processing

[16]http://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html

[17]http://portal.tugraz.at/portal/page/portal/felmi/research/Scanning%20Electron%20Micoscopy/Principles%20of%20SEM

[18] Pavel Zinin, "Microanalysis in Electron Microscopy (EDS and WDS) , "University of Hawaii.

[19]http://en.wikipedia.org/wiki/Inductively_coupled_plasma_mass_spectrometry.

[20] Mahesh Batsala, Baburao Chandu, Bhargavi Sakala, Sreekanth Nama and Sreenu Domatoti., " INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP-MS) , "INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY ,2012.

[21] Koninklijke Philips Electronics N.V. , "Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) , "2008.

[22] http://www.terrachem.de/roentgenbeugungsanalyse.php?language=en.

[23] Robert Green, "Hall Effect Measurements in Materials Characterization,"White Paper.

[24] Y.J. XIE , "Studies of CIGS solar cells with In2Se3 buffer layer, "National Central University.

[25] Shiyou Chen, X. G. Gong,Aron Walsh, and Su-Huai Wei, "Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4, "APPLIED PHYSICS LETTERS, vol 96, 2010.

[26] Seung Wook Shin, S.M. Pawar, Chan Young Park, Jae Ho Yun, Jong-Ha Moon,Jin Hyeok Kim, and Jeong Yong Lee, "Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films, Solar Energy Materials & Solar Cells,vol 95,pp. 3202–3206,2011.

[27] Xianzhong Lin, Jaison Kavalakkatt, Kai Kornhuber, Sergiu Levcenko, Martha Ch. Lux-Steiner, and Ahmed Ennaoui, "Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors, "Thin Solid Films, 2010.

[28] M. Patel, I. Mukhopadhyay, and A. Ray, "Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition," Journal of Physics D:Applied Physics, vol. 45, Nov 7 2012.

[29] Xianzhong Lin, Jaison Kavalakkatt, Kai Kornhuber, Sergiu Levcenko, Martha Ch. Lux-Steiner, and Ahmed Ennaoui, "Structural and optical properties of Cu2ZnSnS4 thin film absorbers from ZnS and Cu3SnS4 nanoparticle precursors, "Thin Solid Films, 2010.

[30] S. M. Pawar, B. S. Pawar, J. H. Kim, Oh-Shim Joo, and C. D. Lokhande, “Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films,” Current Applied Physics, vol.11, pp.117-161, 2011.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *