|
[1] B. GQLDsTEIN, ‘‘Diffusion in Compound Semiconductors,’’ Physical Review, 121, 1305 (1961). [2] D.G. Deppe, N. Holonyak, Jr, ‘‘atom diffusion and impurity‐induced layer disordering in quantum well Ⅲ-V semiconductor heterostructures,’’ J. Appl. Phys. 64(12), 15 December (1988). [3] L. L. Chang, A. Koma, ‘‘Interdiffusion between GaAs and AlAs,’’ Appl. Phys. Lett. 29, 138 (1976). [4] W. D. Laidig, N. Holonyak, M. D. Camras, K. Hess, J. J. Coleman et al, ‘‘Disorder of an AlAs GaAs superlattice by impurity diffusion,’’ Appl. Phys. Lett. 38, 776 (1981). [5] N. Holonyak, Jr., W. D. Laidig, and M. D. Camras, ‘‘IR-redGaAs-AIAs superlattice laser monolithically integrated in a yellow-gap cavity,’’ Appl. Phys. Lett. 39, 102 (1981). [6] L. J. Guido, N. Holonyak, K. C. Hsieh, R. W. Kaliski, W. E. Plano et al, ‘‘Effects of dielectric encapsulation and As overpressure on Al Ga interdiffusion in AlxGa1−x As-GaAs quantumwell heterostructures,’’ J. Appl. Phys. 61, 1372 (1987). [7] L. J. Guido, J. S. Major, J. E. Baker, W. E. Plano, N. Holonyak et al, ‘‘ Column III vacancy and impurityinduced layer disordering of AlxGa1-xAs GaAs heterostructures with SiO2 or Si3N4 diffusion sources, ’’ J. Appl. Phys. 67, 6813 (1990). [8] D. G. Deppe, L. J. Guido, N. Ho~onyak, Jr., and K. C. Hsieh, ‘‘Stripe-geometry quantum wen heterostructure AlxGa1−x As-GaAs lasers defined by defect diffusion,’’ Appl. Phys. Lett. 49, 510 (1986). [9] K.Hamada, H.Naito, M.Kume, M.Yuri and H.Shimizu, “High—power GaA1As single-element lasers with nonabsorbing mirrors,” Proc. SPIE, vol. 1219, pp. 117-125, 1990. [10] P. Gavrilovic, K. Meehan, L. J. Guido, and N. Holonyak, Jr, ‘‘Si-implanted and disordered stripe-geometry AlXGa1-xAs-GaAs quantum well lasers,’’ Appl. Phys. Lett. 47, 903 (1985). [11] J. S. Major, L. J. Guido, K. C. Hsieh, N. Holonyak, W. Stutius et al, ‘‘Low-threshold disorder-defined buried heterostructure strained-layer AlyGa1−yAs-GaAs-InxGa1−xAs quantum well lasers (λ910 nm),’’ Appl. Phys. Lett. 54, 913 (1989). [12] D. G. Deppe, G. S. Jackson, N. Holonyak, R. D. Burnham, and R. L. Thornton, ‘‘Coupled stripe AlxGa1−xAs‐GaAs quantum well lasers defined by impurity‐induced (Si) layer disordering,’’ Appl. Phys. Lett. 50, 632 (1987). [13] J. S. Major, D. C. Hall, L. J. Guido, N. Holonyak, P. Gavrilovic et al, ‘‘High-power disorderdefined coupled stripe AlyGa1−yAs-GaAs-InxGa1−xAs quantum well heterostructure lasers,’’ Appl. Phys. Lett. 55, 271 (1989). [14] K. K. Shih, ‘‘High Surface Concentration Zn Diffusion in GaAs,’’ J. Electrochem. Soc. 1976, Volume 123, Issue 11, Pages 1737-1740. [15] BY V. J. LYONS, ‘‘THE DISSOCIATION PRESSURE OF ZnAs2,’’ International Business Machines Corporation, Research Laboratory, Poughkeepsie, NEW York, Received December 11, 1958. [16] G. A. Silvey, V. J. Lyons and V. J. Silvestri, ‘‘The Preparation and Properties of Some II – V Semiconducting Compounds,’’ J. Electrochem. Soc. 1961, Volume 108, Issue 7, Pages 653-658. [17] Steven R. Styer and Lee F. Donaghey, ‘‘VAPOR PRESSURES OF Zn AND As DURING CLOSED-SYSTEM Zn DIFFUSION INTO GaAs FROM A ZnAs2 SOURCE,’’ Mat. Res. Bull. Vol. I0, pp. IZ97-1304, 1975. [18] S Sudhakar, V Ganesh, Indra Sulania, Pawan K Kulriya and K Baskar, ‘‘Liquid phase epitaxial growth of II–V semiconductor compound Zn3As2,’’ J. Phys. D: Appl. Phys. 40 (2007) 5071–5074. [19] G. N. Parsons, J. H. Souk, and J. Batey, ‘‘Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,’’ J. Appl. Phys. 70, 1553 (1991). [20] K. R. LEE, K. B. SUNDARAM, D. C. MALOCHA, ‘‘Deposition parameters studies of silicon nitride films prepared by plasma-enhanced CVD process using silane-ammonia,’’ JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 4 (1993) 283-287. [21] A Stoffel, A Kov´acs, W Kronast and B M¨ ‘‘uller LPCVD against PECVD for micromechanical applications,’’ J. Micromech. Microeng. 6 (1996) 1–13. Printed in the UK. [22] Chuan Jie Zhonga, Hiroaki Tanakab, Shigetoshi Sugawab, Tadahiro Ohmib, ‘‘High quality silicon nitride deposited by Ar/N2/H2/SiH4 high-density and low energy plasma at low temperature,’’ Microelectronics Journal 37 (2006) 44–49. [23] Haiping Dun, Paihung Pan, Francis R. White, and Richard W. Douse, ‘‘Mechanisms of Plasma-Enhanced Silicon Nitride Deposition Using SiH4/N2 Mixture,’’ J. Electrochem. Soc.1981 volume 128,issue 7, 1555-1563. [24] http://refractiveindex.info/?group=CRYSTALS&material=Si3N4 [25] James D.Plummer, Michael D.Deal, Peter B.Griffin, ‘‘Silicon VLSI Technology Fundamentals, Practice and Modeling,’’ by Prentic Hall, Inc. Upper saddle River, New Jersey 07458, p528, (2000). [26] http://www.itrc.narl.org.tw/Publication/Newsletter/no80/p12.php [27] A. El Amrani, A. Bekhtari, B. Mahmoudi, A. Lefgoum, H. Menari, ‘‘Experimental study of the effect of process parameters on plasma-enhanced chemical vapour deposition of silicon nitride film,’’ Vacuum 86 (2011) 386e390 [28] Jiashen Wei, Poh Lam Ong, Francis E.H. Tay, Ciprian Iliescu, ‘‘A new fabrication method of low stress PECVD SiNx layers for biomedical applications,’’ Thin Solid Films 516 (2008) 5181–5188. [29] J. R. Manning. ‘‘Diffusion Kinetics for Atoms in Crystal.’’ Van Nostrand Princeton, pp.95, 166 (1968). [30] T. Y. Tan and U. Gosele, “Mechanisms of doping-enhanced superlattice disordering and of gallium self-diffusion in GaAs, ’’ Appl. Phys. Lett. 52, 1240 (1988). [31] U. Gösele and F. Morehead, ‘‘Diffusion of zinc in gallium arsenide: A new model.’’ J. Appl. Phys. 52, 4617 (1981). [32] L. Pavesi, D. Araujo, J. D. Ganiere, “Zinc diffusion in GaAs and zinc-induced disordering of GaAs/AlGaAs multiple quantum wells : a multitechnique study.” Optical and Quantum Electronics 23 (1991) S789-S804. [33] Y-R Yuan, Kazuo Eda, G. Allen Vawter, and James L. Merz, “Open tube diffusion of Zn into AIGaAs and GaAs.” J. Appl. Phys. 54, 6044 (1983). [34] D. Heiman, “ Photoluminescence Spectroscopy. ” Physics U600, Adv Lab I – Physics of Waves and Optics, Northeastern University, 6/1/2004. [35] http://www.batop.de/information/Eg_AlGaAs.html
|