|
[1] International Technology Roadmap for Semiconductors, ITRS, Denver, CO, USA, 2011. [2] C. H. Wann et al., “A Comparative Study of Advanced MOSFET Concepts,” IEEE Transactions on Electron Devices, vol. 43, no. 10, pp. 1742–1753, Oct. 1996. [3] Q. Lu et al., “Dual-Metal Gate Technology for Deep-Submicron CMOS Transistor,” in VLSI Symp. Tech. Dig., 2000, pp. 72–73. [4] J. Kedzierski et al., “Complementary Silicide Source/Drain Thin-Body MOSFETs for the 20 nm Gate Length Regime.” in Proc. IEEE Int. Electron Devices Meeting, 2000, pp. 57–60. [5] C. Hu, “Scaling CMOS Devices Through Alternative Structures,” Science in China (Series F). February 2001, 44 (1) 1–7 [6] Y-K. Choi et al., “Ultrathin-Body SOI MOSFET for Deep-Sub-Tenth Micron Era,” IEEE Electron Device Letters, vol. 21, no. 5, pp. 254–255, May 2000. [7] X. Huang et al., “Sub 50-nm FinFET: PMOS,” in Proc. IEEE Int. Electron Devices Meeting, 1999, pp. 67–70. [8] F.-L. Yang et al., “25 nm CMOS Omega FETs,” in Proc. IEEE Int. Electron Devices Meeting, 2002, pp. 255–258. [9] F.-L. Yang et al., “5 nm-Gate Nanowire FinFET,” in Proc. Symp. VLSI Technol., 2004. pp. 196–197. [10] K. J. Kuhn, “Considerations for Ultimate CMOS Scaling,” IEEE Transactions on Electron Devices, vol.59, no.7, pp.1813–1828, Jul. 2012. [11] K. Sato and Y. Yasumura, “Study of the Forward I–V Plot for Schottky Diodes with High Series Resistance,” J. Appl. Phys., vol. 58, no. 9, pp. 3655–3657, Nov. 1985. [12] T. C. Lee, S. Fung, C. D. Beling, and H. L. Au, “A Systematic Approach to the Measurement of Ideality Factor, Series Resistance, and Barrier Height for Schottky Diodes,” J. Appl. Phys., vol. 72, no. 10, pp. 4739–4742, Nov. 1992. [13] G. J. Gaston and I. G. Daniels, "Efficient extraction of metal parasitic capacitances", Proc. ICMTS, pp.157 -160 1995 [14] A. Deutsch, et al., "Modeling and characterization of long on-chip interconnects for high-performance microprocessors", IBM J. Res. Develop., pp.547 -567 1995 [15] P. R.,Brien and T. Savarino, "Modeling the driving-point characteristic of resistive interconnect for accurate delay estimation", Proc. ICCAD, pp.512 -515 1989 [16] J. Cong, et al., "Analysis and justification of a simple, practical 2.5-D capacitance extraction methodology", Proc. Design Automation Conf., pp.627 -632 1997 [17] N. D. Arora, K. V. Raol, R. Schumann, and L. M. Richardson, "Modeling and extraction of interconnect capacitances for multilayer VLSI circuits", IEEE Trans. Computer-Aided Design, vol. 15, pp.58 -67 1996 [18] R. Hokinson, B. Benschneider, M. Arneborn, D. Clay, J. Clouser, S. Dumford, V. Kalathur, V. Kalidindi, S. Kovvali, J. Krause, S. Maresh, B. Munger, N. O,Neill, I. Pragaspathy, W. Qin, R. Sasamori, S. Sayadi, T. Singh, J. Tang, and M. Tracz, "Design and migration challenges for an Alpha microprocessor in a 0.18 copper process", Int. Solid-State Circuits Conf. Tech. Dig., vol. 460, pp.320 -321 2001 [19] P. Vitanov, T Dimitrova and I. Eisele, ”Direct capacitance measurements of small geometry MOS transistors”, dcsigii rulc CMOS ring oscillators”, Elcctronics letters, 4th Microelectronics Journal, Vol. 22, Nos 7-8, pp. 77-89,1991. [20] C. Kortekaas, "On-Chip Quasi-static Floating-gate Capacitance Measurement Metho" , Proc. IEEE Int. Conf. on Microelectronic Test Structures, pp, 109-113, Vol. 3, March 1990. [21] B. Laquai, H. Richter and B. Hofflinger, ”A new method and Test Structure for easy determination of femto-Farad On-Chip capacitances in a MOS process”, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Vol. 5, pp. 62-66, March 1992 [22] M. Yoshimi et al., ”Study of the operation speed of half-micron dcsigii rulc CMOS ring oscillators”, Elcctronics letters, 4th february 1988, Vol. 24, No 3. [23] A. Khalkhal, P. Girard and P. Nouet, ”New Test Structures for On-Chip absolute and accurate measurement of capacitances in a CMOS process”, Proc. IEEE Int. Conf. on Microelectronic Test Vol.7 pp. 130-1347 March 1994 [24] R. Lorival and P. Nouet, ”A Test Chip for MOS transistor capacitance characterization”, This conference. [25] Willem de Lange, ”Accurate determination of CMOS capacitance parameters using multilayer structures”, Proc. IEEE Int. Conf. on Microelectronic Test Structures, Vol. 5, pp. 57-61, March 1992. [26] J. C. Chen, B. McGaughy, D. Sylvester, and C. Hu, "An on-chip, atto-farad interconnect charge-based capacitance measurement (CBCM) technique", Proc. IEDM, pp.69 -72 1996 [27] D. Sylvester, J. C. Chen, and C. Hu, "Investigation of interconnect capacitance characterization using Charge-Based Capacitance Measurements (CBCMs) technique and three-dimensional simulations", IEEE J. Solid-State Circuits, vol. 33, pp.449 -453 1998 [28] D. Sylvester, J. C. Chen, and C. Hu, "Investigation of interconnect capacitance characterization using Charge-Based Capacitance Measurement (CBCM) technique and 3-D simulation", Proc. IEEE Custom Integrated Circuits Conf., pp.491 -494 1997 [29] Yao-Wen Chang; Hsing-Wen Chang ; Chung-Hsuan Hsieh ; Han-Chao Lai ; Ta Cheng Lu ; WenChi Ting ; Ku, J. ; Chih-Yuan Lu, “A novel simple CBCM method free from charge injection-induced errors”, Electron Device Letters, IEEE, Vol.25, Issue 5, pp.262-264 [30] Yao-Wen Chang ; Hsin-Wen Chang ; Chih-Yuan Lu ; Ya-Chin King ; WenChi Ting ; Ku, Y.-H.J. ; Chih-Yuan Lu, “Interconnect capacitance characterization using charge-injection-induced error-free (CIEF) charge-based capacitance measurement (CBCM)”, Semiconductor Manufacturing, IEEE Transactions on, Vol.19, Issue 1, pp50-56.
|