帳號:guest(3.145.77.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許鶴龍
作者(外文):Syu, He-Long
論文名稱(中文):高頻調變砷化鎵系列近紅外光發光二極體之研究
論文名稱(外文):Study of High-Speed GaAs-Based Near-Infrared Light-Emitting Diodes
指導教授(中文):吳孟奇
口試委員(中文):謝光前
何充隆
李峰旻
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063523
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:83
中文關鍵詞:發光二極體砷化鎵特徵接觸電阻頻率響應少數載子生命期
相關次數:
  • 推薦推薦:0
  • 點閱點閱:594
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本文中,我們製作以氧化鎵鋅薄膜作為電流散布層的高頻調變近紅外光發光二極體,並探討其對元件特性的影響;其中氧化鎵鋅薄膜與p型重摻雜砷化鎵之間存在1.7×10-5 Ω-cm2低的特徵接觸電阻。而在近紅外光發光二極體的元件特性方面,對於我們所設計的所有元件在20 mA的情況下所呈現的順向偏壓為1.6至1.7伏特、串聯電阻值為5至6 歐姆。對於最小發光面積的元件,元件在負5伏特下總電容為11.6 pF,以及50 mA下發光功率為4.6 mW。在元件製程設計方面,藉由環型金屬電極的設計及低電阻率的氧化鎵鋅電流散佈層的運用,得到元件頻率響應在50 mA下之 3dB 截止頻寬達107.8 MHz。
另外,也藉由少數載子生命期的觀點去驗證氧化鎵鋅薄膜在砷化鎵/砷化鋁鎵近紅外光發光二極體電流散布的效果;而少數載子生命期是很重要的參數,可從其中分析得到元件許多的相關特性。文中主要也分析了元件發光區域面積對於少數載子生命期的影響,並進一步求得在定電流下,發光二極體達到3dB頻寬為100 MHz時,所需的元件發光區域面積大小。就我們所製作的近紅外光發光二極體而言,在注入電流分別為 10、20、30、40和50 mA的情況下,達到3dB頻寬為100 MHz所需的元件發光區域圓面積直徑依序為13.50、25.51、47.06、66.42 和 80.30 µm。然而,在不同直徑的元件發光區域下,相同的電流密度有相同少數載子生命期,其少數載子生命期與電流密度之間存在著開根號成反比的關係,而與元件發光區域的直徑無關。這也代表著氧化鎵鋅薄膜在近紅外光發光二極體中有良好的電流散布特性。
摘 要......................................................I
Abstract.................................................III
致 謝......................................................V
List of Figure............................................IX
List of Table............................................XIV
Chapter 1 Introduction.....................................1
1-1 Original...............................................1
1-2 Research Motivation....................................2
1-2-1 Plant Grow Light, PGL................................2
1-2-2 Visible Light Communication, VLC.....................4
1-3 Organization of the thesis.............................6
Chapter 2 Theoretical Analysis of High Speed LED...........8
2-1 High-Speed Light-Emitting Diode Modulation Principles..8
2-2 Circular Transmission Line Model (CTLM)...............14
2-3 Properties of GZO/GaAs Contact........................15
2-4 Theory of Current Spreading Layer.....................16
2-5 Characterization Instruments..........................17
2-5-1 I-V and C-V Characteristic Measurement Systems......18
2-5-2 Luminous Intensity (L-I) Measurement System.........18
2-5-3 Electroluminescence Spectrum(E-L)Measurement System.19
2-5-4 Divergence Angle Measurement System.................19
2-5-5 Near-Field Light Intensity Measurement System.......20
2-5-6 Frequency Response Measurement System...............20
Chapter 3 LED Device Structure And Fabrication............25
3-1 Epitaxial Structure Design Concept....................25
3-2 The Fabrication Process of CTLM.......................26
3-3 The Fabrication Process of NIR LED....................28
3-4 Experimental Procedures...............................30
Chapter 4 Results and Discussion..........................40
4-1 Devices measurement...................................40
4-2 Specific Contact Resistance of GZO on P+- GaAs........41
4-3 I-V Characteristics...................................43
4-4 C-V Characteristics...................................51
4-5 Electroluminescence Spectrum and L-I Characteristics..56
4-6 Divergence of angle...................................59
4-7 Frequency Response Bandwidth..........................62
Chapter 5 Characteristics Analysis........................66
5-1 Simulation............................................66
5-2 Evaluation of Current Spreading of GZO from the Aspect of Minority Carrier Lifetime..............................68
5-3 Near-field light intensity of the NIR LEDs............73
Chapter 6 Conclusions.....................................75
Reference:
[1]R. C. Jao and W. Fang, “Development of a flexible lighting system for plant related research using super bright red and blue light-emitting diodes,” Acta Hort., vol. 578, pp. 133-139, 2001.
[2]R. C. Jao and W. Fang, “Effects of frequency and duty ratio on the growth of potato plantlets in vitro using light-emitting diodes,” Hortscience, vol. 39, pp. 375-379, Apr. 2004.
[3]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, Member, IEEE, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 310-320, 2002.
[4]S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chen, Y. R. Wu, K. H. Huang and T. P. Chen, “Chirped GaAs-AlAs distributed Bragg reflectors for high brightness yellow-green light-emitting diodes,” IEEE Photon. Tech. Lett. 9, pp. 182, 1997.
[5]S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chen, Y. R. Wu, K. H. Huang and T. P. Chen, “AlGaInP yellow-green light-emitting diodes with a tensile strain barrier cladding layer,” IEEE Photon. Tech. Lett. 9, pp. 1199, 1997.
[6]R. J. Bula, D. J. Tennessen, R. C. Morrow and T. W. Tibbitts, “Light Emitting Diodes as A Plant Lighting Source,” in Proc. Int. Lighting in Controlled Environments Workshop, 1994.
[7]R. Emerson and W. Arnold, “A separation of the reactions in photosynthesis by means of intermittent light,” Journal of General Physiology, vol. 15, pp. 391-420, Mar 1932.
[8]M. U. F. Kirschbaum and R. W. Pearcy, “Gas exchange analysis of the fast phase of photosynthetic induction in Alocasia macrorrhiza,” Plant Physiol., vol. 87, pp. 818-821, 1988.
[9]D. T. Nhut and N. B. Nam, “Light-Emitting Diodes (LEDs): An Artificial Lighting Source for Biological Studies,” in Third International Conference on the Development of Biomedical Engineering in Vietnam. vol. 27, V. V. Toi and T. Q. D. Khoa, Eds., ed New York: Springer, pp. 134-139, 2010.
[10]B. A. Diner, “The reaction center of photosystem II,” in Staehelin L.A. and Arntzen C.J. (eds) Encylopaedia of Plant Physiology, vol. 19, pp. 422-436, 1986.
[11]D. J. Tennessen, R. J. Bula and T. D. Sharkey, “Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation,” Photosynthesis Research, vol.44, pp. 261-269, 1995.
[12]J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. D. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett., vol. 22, no. 18, pp. 1346-1348, Sept. 2010.
[13]J. J. D. McKendry, D. Massoubre, S. L. Zhang, B. R. Rae, R. P. Green, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “Visible-light communications using a CMOS-controlled micro-light-emitting-diode array,” J. Lightwave Technol., vol. 30, no. 1, pp. 61-67, Jan. 2012.
[14]J. Whitemarsh and W. A. Cramer, “Cytochrome f function in photosynthetic electron transport,” J. Biophys., vol. 26, pp. 223-234, 1979.
[15]N. C. Yeh and J. P. Chung, “High-brightness LEDs-Energy efficient lighting sources and their potential in indoor plant cultivation,” Renewable & Sustainable Energy Reviews, vol. 13, pp. 2175-2180, 2009.
[16]K. Y. Cui, J. G. Quan, and Z. Y. Xu, “Performance of indoor optical femtocell by visible light communication,” Optics Communications, vol. 298, pp. 59-66, 2013.
[17]H. C. Casey, Jr. and F. Stern, “Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs,” J. Appl. Phys., vol.47, pp.631-643, 1976
[18]T. P. Lee and A. G. Dentai, “Power and modulation bandwidth of GaAs-AlGaAs high-radiance LED’s for optical communication systems,” IEEE J. Quantum Electron., vol. 14, pp. 150-159, 1978.
[19]L. B. Chang, D. H. Yeh, L. Z. Hsieh, and S. H. Zeng, “Enhanced modulation rate in platinum-diffused resonant-cavity light-emitting diodes,”J. Appl. Phys., vol. 98, pp. 093504, Nov. 2005.
[20]C. L. Tsai, C. W. Ho, C. Y. Huang, F. M. Lee, M. C. Wu, H. L. Wang, S. C. Ko, W. J. Ho, J. Huang, and J. R. Deng, “Fabrication and characterization of 650 nm resonant-cavity light-emitting diodes,” J. Vac. Sci. Technol., B 22, no. 5, pp. 2518-2521, 2004.
[21]K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electron. Lett., vol. 30, no. 24, pp. 2043-2044, 1994.
[22]M. Jalonen, M. Toivonen, J. Köngäs, A. Salokatve, and M. Pessa, “Oxide-confined resonant cavity red light-emitting diode grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 33, no. 23 , pp. 1989-1990, 1997.
[23]R. Wirth, C. Karnutsch, S. Kugler, and K. Streubel, “High efficiency resonant-cavity LED’s emitting at 650 nm,” IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 421-423, 2001.
[24]R. Wirth, B. Mayer, S. Kugler and K. Streubel,“Fast LEDs for polymer optical fiber communication at 650nm,”In Proc. of SPIE, vol. 6013, pp. 60130F1-8, 2005.
[25]C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with a gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 611-613, May 2013.
[26]G. K. Reeves, “Specific contact resistance using a circular transmission line model,” Solid-State Electronics, vol. 23, pp. 487-490, 1980.
[27]R. H. Cox and H. Strack, “Ohmic contacts for GaAs devices,” Solid-State Electronics, vol. 10, pp. 1213-1218, 1967.
[28]R. Williams, “Modern GaAs Processing Methods.” Norwood, MA: Artech House, 1990.
[29]T. Sanada and O. Wada, “Ohmic contacts to p-GaAs with Au/Zn/Au structure,” Jpn. J. Appl. Phys., vol. 19, no. 8, pp. L491-L494, 1980.
[30]J. K. Sheu, M. L. Lee, Y. S. Lu, and K. W. Shu, “Ga-Doped ZnO transparent conductive oxide films applied to GaN-based light-emitting diodes for improving light extraction efficiency,” IEEE J. Quantum Electron, vol. 44, no. 12, pp. 1211-1218, 2008.
[31]E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine and S. Pinaud, “Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications,” Semicond. Sci. Technol., vol. 23, pp. 035001-1-035001-4, 2008.
[32]S. Lee and D. C. Paine, “Identification of the native defect doping mechanism in amorphous indium zinc oxide thin films studied using ultra high pressure oxidation,” Appl. Phys. Lett., vol. 102, no. 5, pp. 052101-1-052101-5, 2013.
[33]K. H. Lee, P. C. Chang, T. P. Chen, S. P. Chang, H. W. Shiu, L. Y. Chang, C. H. Chen, and S. J. Chang, “Synchrotron radiation based cross-sectional scanning photoelectron microscopy and spectroscopy of n-ZnO:Al/p-GaN:Mg heterojunction,” Appl. Phys. Lett., vol. 102, no. 7, pp. 072104-1-072104-5, 2013.
[34]L. C. Yang, R. X. Wang, S. J. Xu, Z. Xing, Y. M. Fan, X. S. Shi, K. Fu, and B. S. Zhang, “Effects of annealing temperature on the characteristics of Ga-doped ZnO film metal-semiconductor-metal ultraviolet photodetectors,” J. Appl. Phys., vol. 113, pp. 084501-1-084501-5, 2013.
[35]K. Y. Yen, C. H. Chiu, C. W. Li, C. H. Chou, P. S. Lin, T. P. Chen, T. Y. Lin, and J. R. Gong, “Performance of InGaN/GaN MQW LEDs using Ga-doped ZnO TCLs prepared by ALD,” IEEE Photon. Technol. Lett., vol. 24, no. 23, pp. 2105-2108, 2012.
[36]Thompson G. H. B. “Physics of semiconductor laser devices,” John Wiley and Sons, 1980.
[37]E. Fred Schubert, “Light-emitting diodes,’’ second edition, 2006.
[38]Y. F. Chang, C. L. Liao, C. L. Ho, A. S. Liu, and M. C. Wu, “Effects of passivation layer and rapid thermal annealing on the Ga-doped ZnO films grown by ALD,” ECS J. Solid State Sci. Technol, vol. 2, no. 6, pp. N140-N144, 2013.
[39]K. R. Linga, G. H. Olsen, V. S. Ban, A. M. Joshi, “Dark Current Analysis and Characterization of InxGa1-xAs/InAsyP1-y Graded Photodiodes with x>0.53 for Response to Longer Wavelengths ( > 1.7pm),” J. Lightwave Technology., vol. 10, no. 8, 1992.
[40]K. Hild, T. E. Sale, S. J. Sweeney, M. Hirotani, Y. Mizuno, and T. Kato, “Modulation speed and leakage current in 650 nm resonant-cavity light emitting diodes,” IEE Proc.-Optoelectron., vol. 151, no.2, pp. 94-97, Apr. 2004.
[41]G. Blume, T. J. C. Hosea, S. J. Sweeney, P. de Mierry, and D. Lancefield, “AlGaInN resonant-cavity LED devices studied by electromodulated reflectance and carrier lifetime techniques,” IEE Proc.-Optoelectron., vol. 152, no.2, pp. 118-124, May 2005.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *