帳號:guest(18.226.172.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭晉安
作者(外文):Kuo, Chin-An
論文名稱(中文):應用於 CMOS 電容式光聲照相機之峰值感測器電路設計與實作
論文名稱(外文):Design and Implementation of a Peak Detection Circuit for a CMOS Capacitive Photoacoustic Camera
指導教授(中文):盧向成
指導教授(外文):Lu, Shiang-Cheng
口試委員(中文):黃柏鈞
李夢麟
盧向成
口試委員(外文):Huang, Po-Chiun
Li, Meng-Lin
Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063522
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:89
中文關鍵詞:CMOSMEMS電容式超音波傳感器二維快速光聲成像峰值感測電路
外文關鍵詞:Peak Detection CircuitCMOS MEMS Ultrasonic Transducer2-D fast Photoacoustic Imaging
相關次數:
  • 推薦推薦:0
  • 點閱點閱:676
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
此篇研究提出適用於二維陣列之 CMOS MEMS 製程技術所製
作的微電容式超音波傳感器之峰值感測電路(Peak Detection Circuit),
在傳感器接收到超音波並轉換為電壓訊號後放大並取樣峰值,循序輸
出後可由軟體二維光聲成像。相較於傳統三維成像具有快速、適用小
規模像素面積與高度晶片整合性的特性。

在傳統三維光聲成像的量測環境中,晶片上每一像素收到物體被
雷射激發後的超音波類比訊號,類比波型包含了超音波發射源的軸向、
側向、縱向資訊,但須藉由多個像素收到的超音波訊號及發射時間來
運算出發射源的位置,在建立三維模型的掃描時間與後續成像複雜度
較高;若使用峰值保持器將類比波型轉換為輸出峰值,則可以利用此
單純之二維數值表反向運算物體模型,複雜度較低且快速成像。

實驗成功的證明了在輸入頻率為 1 MHz 至 10 MHz ,振幅為
100 mVpp 至 800 mVpp 的弦波及方波,峰值感測電路可以正確的輸
出峰值,誤差值在± 20% 之內;當輸入振幅在 200 mVpp ~ 600 mVpp
範圍中,誤差值更可以改善至 ± 15%。

若峰值感測電路採用更先進之製程將可提升電路性能與減少峰值
誤差,將可提升影像解析度,於醫療將有更大應用。
The research focuses on the study of a peak detection circuit which is used
in a two-dimensional (2-D) capacitive ultrasonic sensor array implemented in a
standard CMOS process. Ultrasonic waves produced by the photoacoustic
effect are received by the sensing pixels, followed by signal amplification, peak
detection, and collection of all the detected values to produce a 2-D
photoacoustic image. Compared to 3-D imaging, the required time for image
production is significantly reduced. The CMOS MEMS technology allows
convenient signal processing to enhance scalability of the array and sensor
miniaturization to increase image resolution.

In the traditional 3-D Photoacoustic Imaging (PAI), every sensing pixel
receives the ultrasound from the object illuminated by laser. The produced
waveform contains the axial, lateral, and depth information of the object. We
have to obtain many waveforms from other pixels so as to identify the position
of emitter origin, where the complexity is higher than 2-D imaging. 2-D
imaging is less complicated and faster because it depends on the peak-value
detection of the sensed waveforms.

In the experiment we successfully detect and hold the peak values by using
input signals with frequencies from 1 MHz to 10 MHz and amplitudes from
100 mVpp to 800 mVpp. The errors are within ±20%. The errors reduce to less
than ±15% when input voltage is from 200 mVpp to 600 mVpp.

The peak detection circuit design can benefit from the use of a more
advanced CMOS process to enhance the circuit speed and reduce the detection
error; in other words, a better image resolution can therefore be achieved.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 簡介 1
1.2 研究動機 3
1.2 互補式金氧半導體微機電系統簡介 8
1.3 相關文獻回顧 11
第二章 超音波感測器晶片之設計與模擬 18
2.1 電容式超音波感測原理 18
2.2 光聲成像原理 21
2.3 電容感測薄膜設計與模擬 25
2.4 後製程程序(濕蝕刻製程) 26
2.5 晶片架構 30
2.6 電路規格制定與設計 32
2.6.1 運算放大器電路 34
2.6.2 電壓緩衝器電路 42
2.6.3 峰值感測電路 48
2.6.4 比較器電路 54
2.6.4 多重選擇器電路 70
2.6.5 晶片佈局 70
第三章 實驗與量測結果 72
3.1 後製程結果 72
3.2 電路量測 74
3.2.1 峰值偵測保持器量測結果與討論 74
第四章 結論與未來工作 82
4.1 結論 82
4.2 未來工作 82
參考文獻 86
[1]X. Wang, et al. “Photoacoustic tomography of biological tissue with
high cross-section resolution: reconstruction and experiment.”
Medicine Physics, vol. 29, pp. 2799–2805, 2002.
[2]F L. Lizzi, M. Greenebaum, J.F. Ernest, M. Elbaum, and D. J.
Coleman, "Theoretical framework for spectrum analysis in ultrasonic
tissue characterization", Journal of the Acoustical Society of America,
vol.73, pp. 1366, 1983.
[3]M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,”
Review of Scientific Instruments, vol. 77, no. 4, art. no. 041101, pp.
041101–041101-22, 2006.
[4]A.G.Bell, “On the production and reproduction of sound by
light,”American Journal of Science, vol. 20, pp. 305–324, 1880.
[5]X. D. Wang, Y. J. Pang, and G. Ku et al., "Noninvasive laser-induced
photoacoustic tomography for structural and functional in vivo
imaging of the brain," Nature Biotechnology, vol. 21, no. 7, pp. 803–
806, Jul, 2003.
[6]M. L. Li, P. H. Wang, P. L. Liao, and M. S.-C. Lu, “Three dimensional
photoacoustic imaging by a CMOS micromachined capacitive
ultrasonic sensor,” IEEE electron device letters, vol. 32, no. 8, pp.
1149–1151, 2011.
[7]Y. Wei, Z. Tang, X. Chen, Y. He, and H. Liu, "Fast photoacoustic
tomography by use of acoustic lens", Journal of Physics, Conference
Series, pp. 277 012039, 2011.
[8]H.S. Tzou and C.I. Tseng, "Distributed piezoelectric sensor/actuator
design for dynamic measurement/control of distributed parameter
systems: A piezoelectric finite element approach", Journal of Sound
and Vibration, vol.138, pp. 17–34, 1990.
[9]M. I. Haller and B. T. Khuri-Yakub, “A surface micromachined
87
electrostatic ultrasonic air transducer,” IEEE Trans, Ultrasonics,
Ferroelectrics and Frequency Control,vol. 43, no. 1, pp. 1–6, 1996.
[10]K. Suzuki, K. Higuchi, and H. Tanigawa, ”A silicon electrostatic
ultrasonic transducer,” IEEE Trans, Ultrasonics, Ferroelectrics and
Frequency Control, vol.36, no. 6, pp. 620–27, 1989.
[11]S. Vaithilingam, T.-J. Ma, Y. Furukawa, I O. Wygant, X. Zhuang, A.
de la Zerda, Ö. oralkan, A. Kamaya, S. S. Gambhir, R. B. Jeffrey, and
butrus T. Khuri-yakub, “Three-dimensional photoacoustic imaging
ssing a two-dimensional CMUT array”, IEEE Trans, Ultrasonics,
Ferroelectrics and Frequency Control, vol. 56, no.11, pp. 2411–2419,
2009.
[12]A.S. Ergun, Y. Huang, X. Zhuang, O. Oralkan, G.G. Yarahoglu, and
B.T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers:
fabrication technology," IEEE Trans, Ultrasonics, Ferroelectrics and
Frequency Control, vol. 52, no. 12, pp. 2242–2258, 2005.
[13]D.-S. Lin, X. Zhuang, S. H. Wong, M. Kupnik, and Butrus Thomas
Khuri-Yakub, “Encapsulation of Capacitive Micromachined
Ultrasonic Transducers Using Viscoelastic Polymer”, IEEE Trans,
Ultrasonics, Ferroelectrics and Frequency Control, vol. 56. No.11, pp.
1341–1351, 2009.
[14]H. Zhang, T. Zhile, Y. He, L.Guo, "Two dimensional photoacoustic
imaging based on an acoustic lens and the peak-hold technology",
Review of Scientific Instruments, vol. 78, pp. 064902–064902-4,
2007.
[15]Y. Wei, Z. Tang, H. Zhang, Y. He, and H. Liu, "Two dimensional
photoacoustic imaging based on an acoustic lens and the peak-hold
technology", Optics Express, vol. 16, pp. 5314–5319, 2008.
[16]X. Fang, C. Hu-Guo, D. Brasse. Y. Hu, "Design of a high accuracy
multi-channel analog CMOS peak detect and hold circuits for
APDBased PET imaging", IEEE Trans., Biomedical Circuits and
Systems, vol. 5, pp. 90–99, 2011.
88
[17]L. R. F. Rose, “Point-source representation for lase-generated
ultrasound”, Journal of the Acoustical Society of America, vol. 75, pp.
723, 1984.
[18] Lihong V. Wang, "Tutorial on photoacoustic microscopy and
computed tomography," IEEE Journal of selected topics in quantum
electronics, vol. 14, no. 1, pp. 171–179, 2008.
[19]G. C. Wetsel, “Photothermal generation of thermoelastic waves in
composite media,” IEEE Trans, Ultrasonics, Ferroelectrics and
Frequency Control, vol. 33, pp. 450–461, 1986.
[20]F. A. McDonald, “Practical quantitative theory of photoacoustic pulse
generation,” Applied Physics Letters, vol. 54, pp. 1504–1506, 1989.
[21]S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S.
Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS
imaging catheter,” IEEE Trans, Ultrasonics, Ferroelectrics and
Frequency Control, vol. 54, no. 5, pp. 978–986, 2007.
[22]A.S. Ergun, Y. Huang, X. Zhuang, O. Oralkan, G.G. Yarahoglu, and
B.T. Khuri-Yakub, "Capacitive micromachined ultrasonic transducers:
fabrication technology," IEEE Trans, Ultrasonics, Ferroelectrics and
Frequency Control, vol. 52, no. 12, pp. 2242–2258, 2005.
[23]G.-C. Wei and M. S.-C. Lu, “Design and characterization of a CMOS
MEMS capacitive resonant sensor array,” Journal of Micromechanics
and Microengineering, vol. 22, pp. 125030, 2012.
[24]M.-H. Chen and M. S.-C. Lu, "Design and characterization of an
air-coupled capacitive ultrasonic sensor fabricated in a CMOS
process," Journal of Micromechanics and Microengineering, vol. 18,
pp. 015009, 2008.
[25]P. K. Tang, B. H. Wang, M. L. Li, and M. S.-C. Lu, “Design and
characterization of the immersion-type capacitive ultrasonic sensors
fabricated in a CMOS process,” Journal of Micromechanics and
Microengineering, vol. 21, no. 2, pp. 025013, 2011.
89
[26]X.C. Jin, I. Ladabaum, and B.T. Khuri-Yakub, "The microfabrication
of capacitive ultrasonic transducers," Journal of
Microelectromechanical Systems, vol.7, no.3, pp. 295–302, 1998.
[27]B. T. Khuri-Yakub, and O. Oralkan, "Capacitive micromachined
ultrasonic transducers for medical imaging and therapy," Journal of
Micromechanics and Microengineering, vol. 21, no. 5, pp. 54004–15,
2011.
[28]I. Wygant, X. Zhuang, D. Yeh, Ö. Oralkan, A. S. Ergun, M. Karaman,
and B. T. Khuri-Yakub, "Integration of 2D CMUT arrays with
front-end electronics for volumetric ultrasound imaging," IEEE Trans,
Ultrasonics, Ferroelectrics and Frequency Control, vol. 55, no. 2, pp.
327–342, 2008.
[29]Ö. Oralkan, S. Ergun, JA. Johnson, M. Karaman, U. Demirci, K.
Kaviani, TH. Lee, and Khuri-Yakub BT, “Capacitive micromachined
ultrasonic transducers: next generation arrays for acoustic imaging?”,
IEEE Trans, Ultrasonics, Ferroelectrics and Frequency Control, vol.
49, pp. 1596–1610, 2002.
[30]T. Buma, M. Spisar, and M. O’Donnell, "A high-Frequency, 2-D
array element using thermoelastic expansion in PDMS", IEEE Trans,
Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, no. 9, pp.
1161–1176, 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *