|
[1] C. Kromer et al., “A 100-mw 4x10 Gb/s transceiver in 80-nm CMOS for high-density optical interconnects,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2667–2679, Dec. 2005. [2] C. Schow, and et al., “A <5mW/Gb/s/link, 16_10Gb/s Bi-Directional Single-Chip CMOS Optical Transceiver for Board-Level Optical Interconnects,” IEEE ISSCC, Feb. 2008. [3] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97(7), 1337–1361 (2009). [4] T. Takemoto et al.,"A Compact 4 x 25-Gb/s 3.0 mW/Gb/s CMOS-Based Optical Receiver for Board-to-Board Interconnects," IEEE J.Lightwave Tech., vol. 28, pp. 3343-3350, 2010. [5] I. Young, E. Mohammed, J. Liao, A. Kern, S. Palermo, B. Block, M. Reshotko, and P. Chang, “Optical I/O technology for tera-scale computing,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), ISSCC Dig. Tech. Papers, Feb. 2009, pp. 468–469. [6] M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1699-1705, Nov./Dec. 2006. [7] R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Wang, R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proceedings of the IEEE, vol. 96, no. 2, pp. 230-247, Feb. 2008. [8] D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1166-1185, July 2009. [9] K. Ohashi, K. Nishi, T. Shimizu, M. Nakada, J. Fujikata, J. Ushida, S. Torii, K. Nose, M. Mizuno, H. Yukawa, M. Kinoshita, N. Suzuki, A. Gomyo, T. Ishi, D. Okamoto, K. Furue, T. Ueno, T. Tsuchizawa, T. Watanabe, K. Yamada, S. Itabashi, and J. Akedo, “On-chip optical interconnect,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1186-1198, July 2009. [10] A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer systems based on silicon photonic interconnects,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1337-1361, July 2009. [11] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0.18-μm CMOS technology,” IEEE Journal of solid-state circuits, vol. 39, no. 12, pp. 2389-2396, Dec. 2004. [12] C.-F. Liao and S.-I. Liu, “40 Gb/s transimpedance-AGC amplifier and CDR circuit for broadband data receivers in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 642–655, Mar. 2008. [13] J.-D. Jin and S. S. H. Hsu, “A 40-Gb/s transimpedance amplifier in 0.18- um CMOS technology,” IEEE J. Solid-State Circuits, vol. 43,no. 6, pp. 1449–1457, Jun. 2008. [14] Shih-Hao Huang, Wei-Zen Chen, Yu-Wei Chang, and Yang-Tung Huang, “A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18- m CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1158-1169, May 2011. [15] D.-U. Li and C.-M. Tsai, “10-Gb/s modulator drivers with local feedback networks,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1025–1030, May 2006. [16] Joohwa Kim; Buckwalter, J.F., "A 40-Gb/s Optical Transceiver Front-End in 45 nm SOI CMOS," Solid-State Circuits, IEEE Journal of , vol.47, no.3, pp.615,626, March 2012. [17] E. Sackinger, Broadband Circuits for Optical Fiber Communication. New York: Wiley Interscience, 2005. [18] S. Park and H. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet application,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 112-21, Jan. 2004. [19] 卓偉漢, “應用於無線通訊系統與光通訊系統接受器之前端放大器,”國立清華大學電子工程研究所碩士論文,2010。 [20] S. Park and H. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance amplifier for gigabit Ethernet application,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 112-21, Jan. 2004. [21] C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 548-552, Feb. 2005. [22] J. Jin and S. Hsu, “A 75-dBΩ 10-Gb/s transimpedance amplifier in 0.18-μm CMOS technology,” IEEE Photonics Technology Letters, vol. 20, no. 24, pp. 2177-2179, Dec. 2008. [23] Behzad Razavi, “Design of ICs for optical Communications”. [24] Chia-Ming Tsai; Mao-Cheng Chiu, "A 10Gb/s Laser-Diode Driver with Active Back-Termination in 0.18μm CMOS," Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International , vol., no., pp.222,608, 3-7 Feb. 2008 [25] S. Galal and B. Razavi, “10-Gb/s limiting amplifier and laser/modulator driver in 0.18 µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2138–2146, Dec. 2003. [26] C. S. Chang, and D. S. Lee, “Principles, Architectures and Mathematical Theories of High Performance Switches,” published by National Tsing Hua University Press, Chapter 2 and Chapter 3, May, 2008. [27] N. McKeown, “Scheduling algorithms for input-queued cell switches,” Ph.D. Thesis. University of California at Berkeley, 1995. [28] C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, Vol. 25, pp. 611-622, 2002. [29] C. S. Chang, D. S. Lee and C. M. Lien, “Load balanced Birkhoff-von Neumann switches, part II: multi-stage buffering,” Computer Communications, Vol. 25, pp. 623-634, 2002 [30] Chiu, C.-T.; Hsu, Y.-H.; Lai, W.-C.; Wu, J.-M.; Hsu, S. S. H.; Lin, Y.-S.; Chen, F.-T.; Kao, M.-S.; Hsu, Y.-S., "Low Propagation Delay Load-Balanced 4 ⨉ 4 Switch Fabric IC in 0.13-μm CMOS Technology," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on , vol.PP, no.99, pp.1,1, 0. [31] H. Y. Huang, J. C. Chien, and L. H. Lu, “A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1111–1120, May 2007. [32] 陳聖文, “應用於光連結系統之高速前端電路與光電介面交換機設計,”國立清華大學電子工程研究所碩士論文,2012。 [32] S. Shekhar, J. S.Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2424–2439, Nov. 2006. [33] Proesel, J.; Schow, C.; Rylyakov, A., "25Gb/s 3.6pJ/b and 15Gb/s 1.37pJ/b VCSEL-based optical links in 90nm CMOS," Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International , vol., no., pp.418,420, 19-23 Feb. 2012 [34] Liu, F.Y.; Patil, D.; Lexau, J.; Amberg, P.; Dayringer, M.; Gainsley, J.; Moghadam, H.F.; Xuezhe Zheng; Cunningham, J.E.; Krishnamoorthy, A.V.; Alon, E.; Ho, R., "10-Gbps, 5.3-mW Optical Transmitter and Receiver Circuits in 40-nm CMOS," Solid-State Circuits, IEEE Journal of , vol.47, no.9, pp.2049,2067, Sept. 2012 [35] Yunzhi Dong; Martin, K.W., "A High-Speed Fully-Integrated POF Receiver With Large-Area Photo Detectors in 65 nm CMOS," Solid-State Circuits, IEEE Journal of , vol.47, no.9, pp.2080,2092, Sept. 2012 [36] Buckwalter, J.F.; Xuezhe Zheng; Guoliang Li; Raj, K.; Krishnamoorthy, A.V., "A Monolithic 25-Gb/s Transceiver With Photonic Ring Modulators and Ge Detectors in a 130-nm CMOS SOI Process," Solid-State Circuits, IEEE Journal of , vol.47, no.6, pp.1309,1322, June 2012 [37] Georgas, M.; Orcutt, J.; Ram, R.J.; Stojanovic, V., "A Monolithically-Integrated Optical Receiver in Standard 45-nm SOI," Solid-State Circuits, IEEE Journal of , vol.47, no.7, pp.1693,1702, July 2012
|