帳號:guest(3.144.3.43)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉格成
作者(外文):Liu, Ko-Cheng
論文名稱(中文):藍寶石基板氮化鎵之準垂直型PiN二極體 研製與特性比較
論文名稱(外文):The Fabrication and Characterization of Quasi Vertical PiN GaN Diode on Sapphire
指導教授(中文):黃智方
指導教授(外文):Huang, Chih-Fang
口試委員(中文):魏拯華
李坤彥
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063513
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:77
中文關鍵詞:氮化鎵PiN二極體
相關次數:
  • 推薦推薦:0
  • 點閱點閱:409
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文中,我們使用厚磊晶之氮化鎵試片製作準垂直型PiN二極體,並解決製程上遇到之問題。我們原設計比較不同表面鈍化層對元件的影響,在正向量測方面電流密度在10V可達1243A/cm2,導通電壓為4.0V,Ron,sp 為3.76 m-cm2。在反向特性方面我們對漏電流成分進行分析,鈍化層在低壓時可抑止元件漏電流,且含鈍化層元件之崩潰電壓可達1000V。我們也量測升溫特性,成功以Su-8保護層方式解決高溫下的崩潰量測問題,在200℃下崩潰電壓達到700V。
為了解決P型歐姆接觸的問題,我們更動製程順序成P型歐姆接觸先行製作,而元件特性皆有所提升。順向特性方面與原製程相比,電流密度在10V達到1768A/cm2,較原製程提升了40,導通電壓降為3.5V 、Ron,sp 為2.67 m-cm2 降低了25,崩潰電壓也有900V,達現有文獻之水準。我們分析並推測幾種可能造成歐姆接觸退化之原因,但詳細的製程影響仍尚待釐清,以現有結果我們認為P型歐姆接觸先做的製程能達成相對良好的元件,而詳細的製程影響需要未來進一步研究。
In this thesis, we fabricated a quasi-vertical PiN diode by thick-epi GaN on a sapphire substrate. Different passivation process was investigated to see their influences on leakage characteristics. In the first fabrication attempt, the best data of forward current is 1243A/cm2 at 10V with a turn on voltage of 4.0V, and specific turn on resistance was 3.76 m-cm2. The passivation layer could suppress reverse leakage current at lower bias, and improved breakdown voltage over 1000V. To measured high temperature reverse bias characterization, we developed the Su-8 coating method and measured 700V breakdown at 200℃ successfully.
In the second attempt, with an improved fabrication sequence to put p-contact first, the forward current density at 10V was improved to 1768A/cm2 at 10 V , about 40 enhancement than the first run, and the turn on voltage was reduced to 3.5V, specific turn on resistance was reduced to 2.67 m-cm2. We analyzed the differences of this two fabrication sequences and speculated the reason was the P type ohmic contact degradation. We concluded that the p-contact first process was better design, but still have to verify by more detail experiments.
目錄
中文摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 XI
第1章 序論 1
1.1 前言 1
1.2 研究動機與文獻回顧 3
1.3 研究方向簡介與論文架構 9
1.3.1研究方向簡介 9
1.3.2論文架構 9
第2章 元件介紹與實驗設計 10
2.1 氮化鎵材料介紹及基板選擇 10
2.2 PiN二極體原理 12
2.2.1 順向導通特性 12
2.2.2 逆偏耐壓特性 14
2.3 高台結構(mesa structure)之深蝕刻 16
2.4 P型歐姆接觸製作與特性介紹 17
2.4.1 P型半導體之摻雜與活化 18
2.4.2 P型歐姆接觸之金屬選擇 19
2.4.3 表面處理之影響 20
2.4.4 P型金屬退火燒結 21
2.5 元件設計與模擬 24
2.5.1 實驗之GaN磊晶介紹 24
2.5.2 元件設計與模擬 27
2.5.2 元件Layout設計 30
2.5.3 實驗目標 31
第3章 光罩設計與元件製程 32
3.1 準垂直型PIN元件設計流程 32
3.2 對準記號蝕刻(Mask1) 33
3.3 蝕刻遮罩與深蝕刻(Mask2) 34
3.3.1 蝕刻遮罩 34
3.3.2 深蝕刻 35
3.4 活化與表面鈍化 37
3.5 N型歐姆接觸(Mask3) 38
3.6 P型歐姆接觸(Mask4) 38
3.7 襯墊金屬(Mask5) 39
第4章 量測結果分析 42
4.1 正向電性分析 42
4.1.1 N型歐姆接觸分析 42
4.1.2 P型歐姆接觸分析 44
4.1.3 元件順向偏壓量測 46
4.1.4 元件不同尺寸量測 48
4.2 反向電性分析 50
4.3 崩潰特性分析 53
4.3.1 崩潰量測 53
4.3.2 場平板對崩潰電壓影響分析 57
4.4 升溫特性分析 58
4.4.1 升溫順向特性 58
4.4.2升溫崩潰特性分析 61
4.5 製程改進 66
4.5.1 P ohmic first元件量測 67
4.5.2 原因分析與製程檢討 71
第5章 結論與未來工作 73
第6章 參考文獻 74

[1] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Lett, vol. 10, p. 455, 1989.
[2] B. J. Baliga, Mordern power device. New York: Willey, 1987.
[3] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, "Electrical characterization of GaN p-n junctions with and without threading dislocations," Appl. Phys. Lett., vol. 73 no. 7, pp. 975-977, Aug. 1998.
[4] Y. Yoshizumi, S. Hashimoto, T. Tanabe, and M. Kiyama, "High-breakdown-voltage pn-junction diodes on GaN substrates," Journal of Crystal Growth, vol. 298, pp. 875-878, Jan. 2007.
[5] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M.M. Wong, U. Chowdhury, H. K. Kwon, R.D. Dupuis, "High-voltage GaN pin vertical rectifiers with 2um thick i-layer," Electronic Lett., vol. 36, no. 23, pp. 1971-1972, Nov. 2000.
[6] J. W. Johnson, A. P. Zhang, W.-B. Luo, F. Ren, S. J. Pearton, S. S. Park, Y. J. Park, "Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers," IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 32-36, Jan 2002.
[7] J. B. Limb, D. Yoo, J.-H. Ryou, W. Lee, S.-C. Shen, and R. D. Dupuis, "High performance GaN pin rectifiers grown on free-standing GaN substrates," Electronic Lett., vol. 42, no. 22, Oct. 2006.
[8] Y. Saitoh, K. Sumiyoshi, M. Okad, T. Horii, T. Miyazaki, H. Shiomi,.M. Ueno, K. Katayama, M. Kiyama, T. Nakamura, "Extremely low on-resistance and high breakdown voltage observed in vertical GaN Schottky barrier diodes with high-mobility drift layers on low-dislocation-density GaN substrates," Applied Physics Express vol. 3, pp. 081001 1-3, Jul. 2010.
[9] A. M. Ozbek and B. J. Baliga, "Planar Nearly Ideal Edge-Termination Technique for GaN Devices," IEEE Electron Device Lett., vol. 32, no. 3 pp. 300-302, Mar. 2011.
[10] Y. Hatakeyama, K. Nomoto, N. Kaneda, T. Kawano, T. Mishima, T. Nakamura, "Over 3.0 GW/cm2 figure-of-merit GaN p-n junction diodes on free-standing GaN substrates," IEEE Electron Device Lett, vol. 32, no. 12, pp. 1674-1676, Dec. 2011.
[11] K. Nomoto, Y. Hatakeyama, H. Katayose, N. Kaneda, T. Mishima, and T. Nakamura, "Over 1.0 kV GaN p–n junction diodes on free-standing GaN substrates," Phys. Status Solidi A, vol. 208, no. 7, pp. 1535-1537, 2011.
[12] K. Mochizuki, T. Mishima, A. Terano, N. Kaneda, T. Ishigaki, and T. Tsuchiya, "Numerical analysis of forward-current/voltage characteristics of vertical GaN Schottky-barrier diodes and p-n diodes on freestanding GaN substrates," IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 1979-1985, Jul. 2011.
[13] http://www.mem.com.tw/article_content.asp?sn=1211010013.
[14] http://www.kymatech.com/.
[15] http://www.goldeneyeled.com/index.html.
[16] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "GaN: Processing, defects, and devices," J. Appl. Phys., vol. 8. no. 1, pp. 1-78, Jul. 1999.
[17] J. Ladroue, A. Meritan, M. Boufnichel, P. Lefaucheux, and P. Ranson, "Deep GaN etching by inductively coupled plasma and induced surface defects," J. Vac. Sci. Technol. A vol. 18, pp. 1226-1232, Oct. 2010.
[18] J. O. Song, J.-S. Ha, and T.-Y. Seong, "Ohmic-contact technology for GaN-based light-emitting diodes: role of P-type contact," IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 42-59, Jan. 2010.
[19] J. T. Trexler, S. J. Pearton, P. H. Holloway, M. G. Mier, K. R. Evans, and R. F. Karlicek, "Comparison of Ni/Au, Pd/Au, Cr/Au metallizations for ohmic contacts to p-GaN," in Proc. Mater. Res. Symp., 1997, pp. 1091-1094.
[20] "Method of manufacturing P-type compound semiconductor," U. S. Patent, No. 5,306,662, 1994.
[21] W. Götz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, "Activation of acceptors in Mgdoped GaN grown by metalorganic chemical vapor deposition," Appl. Phys. Lett., vol. 68, no. 5, pp. 667-669, Jan. 1996.
[22] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, "Hole compensation mechanism of P-type GaN films," J. Appl. Phys., vol. 31, pp. 1258-1266, 1992.
[23] J. Neugebauer and C. G. v. d. Walle, "Hydrogen in GaN: novel aspects of a common impurity," Phys. Rev. Lett., vol. 75, pp. 4452-4455, 1995.
[24] M. E. Zvanut, Y. Uprety, J. Dashdorj, M. Moseley, and W. A. Doolittle, "Passivation and activation of Mg acceptors in heavily doped GaN," J. Appl. Phys., vol. 110, pp. 044508(1-5), Aug. 2011.
[25] A. C. Schmitz, A. T. Ping, M. A. Khan, and I. Adesida, "Schottky barrier height of Ni, Pt, Pd, and Au on n-type GaN," in Proc. Mater. Res. Soc., 1996, pp. 831-834.
[26] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, C.-Y. Chen, and K.-K. Shih, "Low-resistance ohmic contacts to p-type GaN," Appl. Phys. Lett., vol. 74, no. 9, pp. 1275-1277, Mar. 1999.
[27] H. Cho, T. Hossain, J. Bae, and I. Adesida, "Characterization of Pd/Ni/Au ohmic contacts on p-GaN," Solid State Electron., vol. 49, no. 5, pp. 774-778, May 2005.
[28] J.-S. Jang, I.-S. Chan, H.-K. Kim, T.-Y. Seong, S. Lee, and S.-J. Park, "Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN," Appl. Phys. Lett., vol. 74, no. 1, pp. 70-72, 1999.
[29] S. H. Su, C. T. Tseng, C. C. Hau, M. Yokoyama, and S. M. Chen, "Reduction of ohmic contact on p-GaN with surface treatment using Cl2 inductively coupled plasma," J. Vac. Sci. Technol. B, vol. 22, pp. 971-973, May 2004.
[30] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, and N. Shibata, "Effects of annealing in an Oxygen ambient on electrical properties of ohmic contacts to p-type GaN," J. Electronic Materials, vol. 28, no. 3, pp. 341-346, 1999.
[31] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. Kuo, and K. K. Shih, "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films," J. Appl. Phys., vol. 86, no. 8, pp. 4491-4497, Oct. 1999.
[32] H. W. Jang, S. Y. Kim, and J.-L. Lee, "Mechanism for ohmic contact formation of oxidized Ni/Au on p-type GaN," J. Appl. Phys., vol. 94, no. 3, pp. 1748–1752, Aug. 2003.
[33] J.-L. Yang, J. S. Chena, and S. J. Chang, "Presence of nanosize Au dots on the formation of ohmic contact for the Ni–Au base film to p-GaN," J. Vac. Sci. Technol. B, vol. 23, no. 5, pp. 2127-2131, Oct. 2005.
[34] J.-M. Lee, K.-M. Chang, I.-H. Lee, and S.-J. Parkz, "Cl2-based dry etching of GaN and InGaN using inductively coupled plasma," J. Electrochemical Society, vol. 147, no. 5, pp. 1859-1863, 2000.
[35] X. Wang, G. Yu, B. Lei, X. Wang, C. Lin, Y. Sui, "Recovery of dry etching–induced damage in n-GaN by Nitrogen plasma treatment at growth temperature," J. Electronic Materials, vol. 36, no. 6, pp. 697-701, 2007.
[36] C. Lee, H. Sekiguchi, H. Okada, and A. Wakahara, "Plasma-induced damage and recovery on Au/n-GaN Schottky diode in different processes," Jpn. J. Appl. Phys., vol. 51, pp. 076503 1-4, 2012.
[37] J. M. Shah, Y.-L. Li, T. Gessmann, and E. F. Schuberta, "Experimental analysis and theoretical model for anomalously high ideality factors „nš2.0… in AlGaN/GaN p-n junction diodes," J. Appl. Phys., vol. 94, no. 4, pp. 2627-2630, Aug 2005.
[38] T. Uesugi and T. Kachi, "Electrical characterization of GaN p–n junctions grown on freestanding GaN substrates by metal–organic chemical vapor deposition," Jpn. J. Appl. Phys., vol. 50, pp. 031005 1-4, Mar. 2011.
[39] J. Melai1, C. Salm, S. Smits, J. Visschers, and J. Schmitz, "The electrical conduction and dielectric strength of SU-8," J. Micromech. Microeng. , vol. 19, pp. 065017 1-7, May 2009.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *