|
[1] V. Jain, S. Sundararaman, and P. Heydari, “A 22–29-GHz UWB pulse-radar re- ceiver front-end in 0.18-m CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1903-1914, Aug. 2009. [2] H. Krishnaswamy and H. Hashemi,“A Fully Integrated 24GHz 4-Channel Phased-Array in the PLL loop bandwidth, the strength of this downconverted Transceiver in 0.13pm CMOS Based on a Variable-Phase Ring Oscillator and PLL Architecture,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007. [3] A. Natarajan, A. Komijani and A. Hajimiri, “A Fully Integrated 24-GHz Phased- Array Transmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502–2514, Dec 2005. [4] H. Krishnaswamy and H. Hashemi, “A 4-Channel 24-27 GHz UWB Phased-Array Transmitter in 0.13µm CMOS for Vehicular Radar,” IEEE Custom Intergrated Circuits Conf.(CICC), 2007, pp. 753-756. [5] G. Girlando, S. A. Smerzi, T. Copani, and G. Palmisano, “Amonolithic 12-GHz heterodyne receiver for DVB-S applications in silicon bipolar technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp.952–959, Mar. 2005. [6] P. Andreani and H. Sjoland, “Noise Optimization of an Inductively Degenerated CMOS Low Noise Amplifier,” IEEE Trans. Circuits Syst. II, vol. 48, no. 9, pp. 835–841, Sep. 2001. [7] Behzad Razavi, RF Microelectronics, 2nd Edition, Pearson, 2011. [8] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004. [9] Guillermo Gonzalez, Microwave Transistor Amplifier Analysis and Design, 2nd Edition, Prentice Hall, 1996. [10] W. Cho and S. Hsu, “An ultra-low-power 24 GHz low-noise amplifier using 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 681-683, 2010. [11] M. Reiha and J. Long, “A 1.2 V reactive-feedback 3.1-10.6 GHz low-noise amplifier in 0.13 μm CMOS” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1023-33, May 2007. [12] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0.18-m CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2389–2396, Dec. 2004. [13] S. Shekhar, J. S.Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no.11, pp. 2424–2439, Nov. 2006. [14] J. Kim et al., “Circuit techniques for a 40 Gb/s transmitter in 0.13-m CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 150–151. [15] C.-C. Chen, H.-Y. Yang and Y.-S. Lin, “A 21–27 GHz CMOS wideband LNA with 9.3±1.3 dB gain and 103.9±8.1 ps group-delay using standard 0.18 μm CMOS technology,’’ Radio and Wireless Symposium, pp. 586-589 ,2009. [16] S. C. Shin et. al., "A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448-450, Jul. 2005. [17] M. El-Nozahi, E. Sanchez-Sinencio, and K. Entesari, “A millimeterwave (23–32 GHz) wideband BiCMOS low-noise amplifier,” IEEE J. Solid-States Circuits, vol. 45, no. 2, pp. 289–299, Feb. 2010. [18] C.-H. Li, Y.-L. Liu, and C.-N. Kuo, “A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1629–1638, Jun. 2011. [19] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Distributed Active Transformer-A New Power-Combining and Impedance-Transformation Technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002. [20] C. Hermann, M. Tiebout, and H. Klar, “A 0.6-V 1.6-mW transformer-based 2.5-GHz downconversion mixer with +5.4-dB gain and -2.8-dBm IIP3 in 0.13-m CMOS,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 488–495, Feb. 2005. [21] M. El-Nozahi, E. Sánchez-Sinencio, and K. Entesari, “A 20–32-GHz wideband mixer with 12-GHz IF bandwidth in 0.18- μm SiGe process,” IEEETrans. Microw. Theory Tech., vol.58, no.11, pp.2731-2740, Nov. 2010. [22] K.W. Kobayashi, R. Esfandiari, M.E. Hafizi, D. C. Streit, A.K. Oki, L.T. Tran, D.K. Umemoto and M.E. Kim, “GaAs HBT Wideband Matrix Distributed and Darlington Feedback Amplifiers to 24 GHz,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 12, pp. 2001–2009, Dec. 1991. [23] V. Aparin and L.E. Larson, “Modified Derivative Superposition Method for Linearizing FET Low-Noise amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005. [24] X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuit, vol. 39, no. 2, pp. 368-373, Feb. 2004. [25] A. Mazzanti, M. Sosio, M. Repossi, and F. Svelto, “A 24 GHz subharmonic receiver front-end with integrated multi-phase LO generation in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf., 2008, pp. 216–608. [26] M. El-Nozahi, A. Amer, E. Sanchez-Sinencio, and K. Entesari, “A millimeter- wave (24/31 GHz) dual-band switchable harmonic receiver in 0.18-m SiGe process,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2717–2730, Nov. 2010. [27] S.-L. Huang, Y.-S. Lin, and J.-H. Lee, “A low-power low-noise 21–29 GHz ultra-wideband receiver front-end in 0.18 m CMOS technology,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–4. [28] A. Valdes-Garcia, S.T. Nicolson, J.-W. Lai; A. Natarajan, P.-Y. Chen; S.K. Reynolds, J.-H.C. Zhan, D.G. Kam, D. Liu, B. Floyd, “A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications,” IEEE J. Solid-State Circuit, vol. 45, no. 12, pp. 2757-2773, Dec. 2010. [29] R.W. Vogel, “Analysis and design of lumped and lumped distributed element directional couplers for MIC and MMIC applications,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 253–262, Feb. 1992. [30] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001. [31] C.-Y. Kuo, J.-Y. Chang and S.-I. Liu, “A spur-reduction technique for a 5-GHz frequency synthesizer,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol.53, no.3, pp. 526-533, Mar. 2006. [32] H. Zarei, C.T. Charles and D.J. Allstot, “Reflective-Type Phase Shifters for Multiple-Antenna Transceivers,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007. [33] J.-C. Wu, T.-Y. Chin, S.-F. Chang and C.-C. Chang, “2.45-GHz CMOS Ref- lection-Type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2180–2189, Oct. 2008. [34] B.-H. Ku, S.-H. Baek and S. Hong, “A Wideband Transformer-Coupled CMOS Power Amplifier for X-Band Multifunction Chips,” IEEE Trans. Microw. Theory Tech., vol. 59, no.6, pp.1599–1609, Jun. 2011. [35] K.-J. Koh and G. M. Rebeiz, “0.13-um CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays,” IEEE J. Solid-State Circuit, vol. 42, no. 11, pp. 2535-2546, Nov. 2007. [36] Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher and A. H. M. Van Roermund, “A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems,” IEEE J. Solid-State Circuit, vol. 45, no. 9, pp. 1697-1709, Sep. 2010.
|