帳號:guest(18.226.172.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇柏成
論文名稱(中文):應用於K頻段之射頻接收器前端電路與相移器設計
論文名稱(外文):Design of RF Receiver Front-end and Phase Shifter for K-band Applications
指導教授(中文):徐碩鴻
口試委員(中文):孟慶宗
邱煥凱
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:100063504
出版年(民國):102
畢業學年度:101
語文別:中文英文
論文頁數:56
中文關鍵詞:低雜訊放大器混頻器平衡器相移器
相關次數:
  • 推薦推薦:0
  • 點閱點閱:526
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
於此論文中,主要將探討應用於K頻段(18-26.5 GHz)系統之低雜訊放大器、射頻接收機前端電路與相移器之設計、模擬及量測,其應用如無線通訊系統、短距離汽車防撞雷達與低雜訊降頻器(Low noise block)等。
於K頻段應用中,此論文完成一個實作在0.18-um CMOS製程之寬頻(18.3-26.2)低雜訊放大器(A 18.3-26.2 GHz wideband low noise amplifier),藉由使用正耦合變壓器以得到較寬的增益頻寬,在輸入端匹配部分則採用變壓器迴授匹配網路方式,以提供較寬匹配頻寬與較低雜訊。此低雜訊放大器完成了10.2-dB的功率增益、3.9-dB的雜訊指數、7.9-GHz頻寬以及10.7-mW功耗。在衛星低雜訊降頻器(LNB)應用中,我們使用0.18-um BiCMOS製程完成一18-22 GHz射頻前端電路,包含低雜訊放大器、被動平衡器(passive balun)、混頻器與中頻放大器,量測結果具有最高34.5-dB增益、8.8-dB雜訊指數、4.2-dBm OP1dB、14.2-dBm OIP3及約59.4-mW功耗。
此外,由於短距離汽車防撞雷達系統的高度發展,在本研究中,完成一應用於相位陣列(phased-array)傳輸端之反射式相移器(reflection type phase shifter),利用改良之型諧振負載以降低損耗變異,並使用變壓器方式呈現已縮小整體晶片面積,模擬完成一具大於200o輸出相位之相移器,在最後並結合上述相移器與可調式驅動放大器(tunable driving amplifier),模擬完成一具有360o輸出相位、最高平均增益10.4-dB與13.5-dBm OP1dB之相位陣列傳輸端電路。
In this thesis, a low noise amplifier(LNA), a receiver front-end circuit and a phase shifter in K-band (18-26.5 GHz) are discussed regarding their designs, simulations and measurements. In this frequency band, there are several important applications, such as wireless communications, automotive short range radar (SRR) and low-noise blocks(LNB).
For K-band applications, a wideband 18.3-26.2GHz LNA fabricated in 0.18-um CMOS is presented. By utilizing positively coupled transformer, the gain bandwidth product can be extended. Furthermore, the transformer feedback input matching network is used to obtain wide matching bandwidth and low noise figure. In this design, the wideband LNA attains a 10.2-dB power gain, 3.9-dB noise figure, 7.9-GHz bandwidth under 10.7-mW power consumption. For K-band satellite LNB design, a 18-22 GHz receiver front-end circuit including the LNA, passive balun, mixer, and intermediate frequency(IF) amplifier is realized in a 0.18-um BiCMOS technology. The measurement results achieve 34.5-dB conversion gain, 8.8-dB noise figure, 4.2-dBm OP1dB, 14.2-dBm OIP3 under 59.4 mW power consumption.
Furthermore, for applications of the automotive SRR systems, a reflection type phase shifter (RTPS) for phased-array transmitter is implemented. By utilizing the transformer  resonated loads, a compact area is obtained with reduction of loss variations, and. The simulated result achieves at least 200 o phase control range. At last, a full-360o phase shifter is realized, which consists of the proposed RTPS and a tunable driving amplifier. The simulated results of the proposed phase shifter achieves a 360o phase control range, maximum 10.4-dB gain (average) and 13.5-dBm OP1dB, which is suitable for realizing a phased-array transmitter.
ACKNOWLEDGEMENT ii
ABSTRACT iii
摘要 iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 A Wideband Low-Noise Amplifier for K-band Applications 3
2.1 Basics of Low-Noise Amplifier Design 3
2.2 Design Techniques for Wideband LNA 7
2.2.1 Gate-Source Transformer-Feedback Matching Network 7
2.2.2 Bandwidth Extension Techniques 11
2.2.3 Transformer with Positive Coupling for Bandwidth Extension 13
2.3 Circuit Schematic and Measurement Results 15
2.4 Summary and Comparison 18
Chapter 3 Design of RF Receiver Front-end for K-band Satellite Applications 19
3.1 Basic Concepts in RF Receiver Design 19
3.2 An 1822 GHz RF Receiver Front-end Design 22
3.2.1 Receiver Design 22
3.2.2 IF Amplifier with gm3 Compensation Technique 27
3.3 Circuit Schematic and Measurement Results 29
3.4 Summary and Comparison 33
Chapter 4 Design of K-band Phase Shifters for Phased-Array Applications 34
4.1 Analysis and Design of K-band Reflection Type Phase Shifter 34
4.1.1 Design of 3dB 90o Coupler and Reflective Loads 35
4.1.2 Measurement Results and Discussion 38
4.2 A Full-360o Span Phase Shifter for Phased-Array Transmitter 43
4.2.1 System Block Diagram 43
4.2.2 Design of Tunable Driving Amplifier 44
4.3 Circuit Schematic and Measurement Results 46
4.4 Summary and Comparison 51
Chapter 5 Conclusion 52
References 53
[1] V. Jain, S. Sundararaman, and P. Heydari, “A 22–29-GHz UWB pulse-radar re- ceiver front-end in 0.18-m CMOS,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 1903-1914, Aug. 2009.
[2] H. Krishnaswamy and H. Hashemi,“A Fully Integrated 24GHz 4-Channel Phased-Array in the PLL loop bandwidth, the strength of this downconverted Transceiver in 0.13pm CMOS Based on a Variable-Phase Ring Oscillator and PLL Architecture,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007.
[3] A. Natarajan, A. Komijani and A. Hajimiri, “A Fully Integrated 24-GHz Phased- Array Transmitter in CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2502–2514, Dec 2005.
[4] H. Krishnaswamy and H. Hashemi, “A 4-Channel 24-27 GHz UWB Phased-Array Transmitter in 0.13µm CMOS for Vehicular Radar,” IEEE Custom Intergrated Circuits Conf.(CICC), 2007, pp. 753-756.
[5] G. Girlando, S. A. Smerzi, T. Copani, and G. Palmisano, “Amonolithic 12-GHz heterodyne receiver for DVB-S applications in silicon bipolar technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp.952–959, Mar. 2005.
[6] P. Andreani and H. Sjoland, “Noise Optimization of an Inductively Degenerated CMOS Low Noise Amplifier,” IEEE Trans. Circuits Syst. II, vol. 48, no. 9, pp. 835–841, Sep. 2001.
[7] Behzad Razavi, RF Microelectronics, 2nd Edition, Pearson, 2011.
[8] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[9] Guillermo Gonzalez, Microwave Transistor Amplifier Analysis and Design, 2nd Edition, Prentice Hall, 1996.
[10] W. Cho and S. Hsu, “An ultra-low-power 24 GHz low-noise amplifier using 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 681-683, 2010.
[11] M. Reiha and J. Long, “A 1.2 V reactive-feedback 3.1-10.6 GHz low-noise amplifier in 0.13 μm CMOS” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1023-33, May 2007.
[12] S. Galal and B. Razavi, “40-Gb/s amplifier and ESD protection circuit in 0.18-m CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2389–2396, Dec. 2004.
[13] S. Shekhar, J. S.Walling, and D. J. Allstot, “Bandwidth extension techniques for CMOS amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no.11, pp. 2424–2439, Nov. 2006.
[14] J. Kim et al., “Circuit techniques for a 40 Gb/s transmitter in 0.13-m CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2005, pp. 150–151.
[15] C.-C. Chen, H.-Y. Yang and Y.-S. Lin, “A 21–27 GHz CMOS wideband LNA with 9.3±1.3 dB gain and 103.9±8.1 ps group-delay using standard 0.18 μm CMOS technology,’’ Radio and Wireless Symposium, pp. 586-589 ,2009.
[16] S. C. Shin et. al., "A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 µm CMOS Technology," IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448-450, Jul. 2005.
[17] M. El-Nozahi, E. Sanchez-Sinencio, and K. Entesari, “A millimeterwave (23–32 GHz) wideband BiCMOS low-noise amplifier,” IEEE J. Solid-States Circuits, vol. 45, no. 2, pp. 289–299, Feb. 2010.
[18] C.-H. Li, Y.-L. Liu, and C.-N. Kuo, “A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1629–1638, Jun. 2011.
[19] I. Aoki, S.D. Kee, D.B. Rutledge, and A. Hajimiri, “Distributed Active Transformer-A New Power-Combining and Impedance-Transformation Technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002.
[20] C. Hermann, M. Tiebout, and H. Klar, “A 0.6-V 1.6-mW transformer-based 2.5-GHz downconversion mixer with +5.4-dB gain and -2.8-dBm IIP3 in 0.13-m CMOS,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 488–495, Feb. 2005.
[21] M. El-Nozahi, E. Sánchez-Sinencio, and K. Entesari, “A 20–32-GHz wideband mixer with 12-GHz IF bandwidth in 0.18- μm SiGe process,” IEEETrans. Microw. Theory Tech., vol.58, no.11, pp.2731-2740, Nov. 2010.
[22] K.W. Kobayashi, R. Esfandiari, M.E. Hafizi, D. C. Streit, A.K. Oki, L.T. Tran, D.K. Umemoto and M.E. Kim, “GaAs HBT Wideband Matrix Distributed and Darlington Feedback Amplifiers to 24 GHz,” IEEE Trans. Microwave Theory Tech., vol. 39, no. 12, pp. 2001–2009, Dec. 1991.
[23] V. Aparin and L.E. Larson, “Modified Derivative Superposition Method for Linearizing FET Low-Noise amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 2, pp. 571–581, Feb. 2005.
[24] X. Guan and A. Hajimiri, “A 24-GHz CMOS front-end,” IEEE J. Solid-State Circuit, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[25] A. Mazzanti, M. Sosio, M. Repossi, and F. Svelto, “A 24 GHz subharmonic receiver front-end with integrated multi-phase LO generation in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf., 2008, pp. 216–608.
[26] M. El-Nozahi, A. Amer, E. Sanchez-Sinencio, and K. Entesari, “A millimeter- wave (24/31 GHz) dual-band switchable harmonic receiver in 0.18-m SiGe process,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2717–2730, Nov. 2010.
[27] S.-L. Huang, Y.-S. Lin, and J.-H. Lee, “A low-power low-noise 21–29 GHz ultra-wideband receiver front-end in 0.18 m CMOS technology,” in Proc. IEEE Custom Integr. Circuits Conf., 2011, pp. 1–4.
[28] A. Valdes-Garcia, S.T. Nicolson, J.-W. Lai; A. Natarajan, P.-Y. Chen; S.K. Reynolds, J.-H.C. Zhan, D.G. Kam, D. Liu, B. Floyd, “A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications,” IEEE J. Solid-State Circuit, vol. 45, no. 12, pp. 2757-2773, Dec. 2010.
[29] R.W. Vogel, “Analysis and design of lumped and lumped distributed element directional couplers for MIC and MMIC applications,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 253–262, Feb. 1992.
[30] F. Ellinger, R. Vogt, and W. Bachtold, “Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 5, pp. 913–917, May 2001.
[31] C.-Y. Kuo, J.-Y. Chang and S.-I. Liu, “A spur-reduction technique for a 5-GHz frequency synthesizer,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol.53, no.3, pp. 526-533, Mar. 2006.
[32] H. Zarei, C.T. Charles and D.J. Allstot, “Reflective-Type Phase Shifters for Multiple-Antenna Transceivers,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[33] J.-C. Wu, T.-Y. Chin, S.-F. Chang and C.-C. Chang, “2.45-GHz CMOS Ref- lection-Type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,” IEEE Trans. Microw. Theory Tech., vol. 56, pp. 2180–2189, Oct. 2008.
[34] B.-H. Ku, S.-H. Baek and S. Hong, “A Wideband Transformer-Coupled CMOS Power Amplifier for X-Band Multifunction Chips,” IEEE Trans. Microw. Theory Tech., vol. 59, no.6, pp.1599–1609, Jun. 2011.
[35] K.-J. Koh and G. M. Rebeiz, “0.13-um CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays,” IEEE J. Solid-State Circuit, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[36] Y. Yu, P. G. M. Baltus, A. de Graauw, E. van der Heijden, C. S. Vaucher and A. H. M. Van Roermund, “A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems,” IEEE J. Solid-State Circuit, vol. 45, no. 9, pp. 1697-1709, Sep. 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *