帳號:guest(18.119.109.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李至軒
作者(外文):Li, Chih-Hsuan
論文名稱(中文):樹分割問題
論文名稱(外文):On the Tree Partition Problems
指導教授(中文):王炳豐
口試委員(中文):王炳豐
趙坤茂
蔡錫鈞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:100062702
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:62
中文關鍵詞:演算法樹形圖分割問題
外文關鍵詞:algorithmstreespartition problems
相關次數:
  • 推薦推薦:0
  • 點閱點閱:201
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
考慮一 n 個 vertices 的 tree T,每個 vertex 上都有一個非負整數的 weight,而每一條 edge 上都有一個正整數的 cost。一個 T 的 partition 為在 T 上刪除一些 edges 後所形成的 subtrees。令 l 和 u 為兩個非負整數且 l <= u。一個 [l, u]-partition 為一每個 subtree 的 weight 都在 [l, u] 中的 partition。一個 p-[l, u]-partition 為一有 p 個 subtrees 的 [l, u]-partition。一個 partition 的 cost 定義為被刪除的 edge 的 cost 總和。本論為的重點為下列兩個問題: (1) 如何求出一個 p-[l, u]-partition 以及 (2) 如何求出一個 minimum-cost [l, u]-partition。對於問題 (1),本論文提出一 O(n p^{4} loglog p / log^{2} p) 時間的演算法。對於問題 (2),本論文證明它為 NP-hard 並提出一 O(n u^{2} loglog u / log^{2} u) 時間的 pseudo-polynomial 演算法。上述兩個演算法藉由套用目前最好的 (min, +)-convolution 演算法來加速原本的演算法,分別改進了之前 O(n p^{4}) 及 O(n u^{2}) 的結果。本論文也研究問題 (1) 及問題 (2) 的延伸問題: 如何求出一個 minimum-cost p-[l, u]-partition。對於這個延伸問題,本論文提出一 O(n u^{2} p^{2} loglog p / log^{2} p) 時間的演算法。
Consider a tree T with n vertices, in which each vertex is associated with a nonnegative integer weight and each edge is associated with a positive integer cost. A partition of T is a set of subtrees induced by removing some edges. Let l <= u be two nonnegative integers. An [l, u]-partition is a partition such that the total weight of each subtree is in [l, u]. A p-[l, u]-partition is an [l, u]-partition with p subtrees. The cost of a partition is the total cost of the removed edges. The focus of this thesis is the following two problems: (1) the problem of finding a p-[l, u]-partition and (2) the problem of finding a minimum-cost [l, u]-partition. For (1), an O(n p^{4} loglog p / log^{2} p)-time algorithm is presented. For (2), its NP-hardness is proved. In addition, an O(n u^{2} loglog u / log^{2} u)-time pseudo-polynomial algorithm is presented. The presented algorithms for (1) and (2) improve, respectively, the previous upper bounds from O(n p^{4}) and O(n u^{2}). The improvement is achieved by an efficient application of the current best algorithm for computing the (min, +)-convolution of two vectors to reduce the running time of the previous algorithms. This thesis also considers the following nature extension of (1) and (2): finding a minimum-cost p-[l, u]-partition. For this extended problem, an O(n u^{2} p^{2} loglog p / log^{2} p)-time algorithm is presented.
Abstract i
Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 Previous Results and Related Work 3
1.1.1 Previous Results 4
1.1.2 Related Work 6
1.2 Summary of Results 12
1.3 Organization of the Thesis 14
Chapter 2 The p-[l, u]-partition Problem on Trees 15
2.1 Notation 15
2.2 Ito et al.'s Algorithm 17
2.2.1 An O(np4u2)-time Algorithm 17
2.2.2 An O(np4)-time Algorithm 21
2.3 An Improved Algorithm for the p-[l, u]-partition Problem on Trees 26
2.3.1 The (min, +)-convolution 27
2.3.2 An Improved Algorithm 29
Chapter 3 The Minimum-cost (Maximum-cost) [l, u]-partition Problem on Trees 34
3.1 The Minimum-cost [l, u]-partition Problem on Trees 34
3.1.1 The NP-hardness of the Minimum-cost [l, u]-partition Problem on Trees 35
3.1.2 Lukes's Algorithm 37
3.1.3 An Improved Algorithm for the Minimum-cost [l, u]-partition Problem on Trees 40
3.2 The Maximum-cost [l, u]-partition Problem on Trees 42
3.2.1 The NP-hardness of the Maximum-cost [l, u]-partition Problem on Trees 42
3.2.2 A Pseudo-polynomial Time Algorithm 46
Chapter 4 The Minimum-cost (Maximum-cost) p-[l, u]-partition Problem on Trees 48
4.1 The Minimum-cost p-[l, u]-partition Problem on Trees 48
4.1.1 An O(np2u2)-time Algorithm 48
4.1.2 An Improved Algorithm 52
4.2 The Maximum-cost p-[l, u]-partition Problem on Trees 53
Chapter 5 Conclusions and Future Work 56
References 60
[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer Algorithm, Addison-Wesley, Reading, 1974
[2] R. I. Becker, S. R. Schach, and Y. Perl, "A shifting algorithm for min-max tree partitioning," Journal of the ACM, vol. 29, no. 1, pp. 58-67, 1982.
[3] R. Becker, B. Simeone, and Y-I. Chiang, "A shifting algorithm for continuous tree partitioning," Theoretical Computer Science, vol. 282, no. 2, pp. 353-380, 2002.
[4] R. Benkoczi, B. Bhattacharya, Q. Shi, ''New upper bounds on continuous tree edge-partition problem,'' in Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management, Lecture Notes in Computer Science, vol. 5034 , pp. 38-49, 2008.
[5] B. Bozkaya, E. Erkut, G. Laporte, ''A tabu search heuristic and adaptive memory procedure for political districting,'' European Journal of Operational Research, vol. 144, no. 1, pp. 12–26, 2003.
[6] D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman, M. Pătraşcu, P. Taslakian, ''Necklaces, Convolutions, and X + Y,'' Algorithmica, accepted, 2012.
[7] D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman, P. Taslakian, ''Necklaces, Convolutions, and X + Y,'' in Proceedings of the 14th Annual European Symposium on Algorithms, Lecture Notes in Computer Science, vol. 4168, pp. 160-171, 2006.
[8] T.M. Chan, ''More algorithms for all-pairs shortest paths in weighted graphs,'' SIAM Journal on Computing, vol. 39, no. 5, pp. 2075-2089, 2010.
[9] R. Chandrasekaran, A. Daughety, ''Location on tree networks: p-centre and n-dispersion problems,'' Mathematics of Operations Research, vol. 6, no. 1, pp. 50-57, 1981.
[10] R. Chandrasekaran, A. Tamir, ''An O((n log p)2) algorithm for the continuous p-center problem on a tree,'' SIAM Journal on Algebraic Discrete Methods, vol. 1, no. 4, pp. 370–375, 1980.
[11] R. Cole, "Slowing down sorting networks to obtain faster sorting algorithms," Journal of the ACM, vol. 34, no. 1, pp. 200-208, 1987.
[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, MIT Press, 2001.
[13] G. N. Frederickson, "Optimal algorithms for tree partitioning," in Proceedings of the 2nd ACM-SIAM Symposium on Discrete Algorithms, pp. 168-177, 1991.
[14] G. N. Frederickson, "Optimal parametric search algorithms in trees I: Tree partitioning," Technical Report, CSD-TR-1029, Computer Science Department, Purdue University, 1992.
[15] G. N. Frederickson, D. B. Johnson, ''Finding kth paths and p-centers by generating and searching good data structures,'' Journal of Algorithms, vol. 4, no.1, pp. 61-80, 1983.
[16] R.C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley, Reading, MA, 1977.
[17] Y. Han, T. Takaoka, '' An O(n3 loglog n/log2 n) Time Algorithm for All Pairs Shortest Paths,'' in Proceedings of the 13th Scandinavian Symposium and Workshops on Algorithm Theory, Lecture Notes in Computer Science, vol. 7357 , pp. 131-141, 2012.
[18] N. Halman and A. Tamir, "Continuous bottleneck tree partitioning problems," Discrete Applied Mathematics, vol. 140, no. 1-3, pp. 185-206, 2004.
[19] G. Y. Handler, ''Minimax location of a facility in an undirected tree graph,'' Transportation Science, vol. 7, no. 3, pp. 287-293, 1973.
[20] G. Y. Handler, ''Finding two-centers of a tree: The continuous case,'' Transportation Science, vol. 12, no. 2, pp. 93-106, 1978.
[21] T. Ito, T. Nishizeki, M. Schröder, T. Uno, X. Zhou, "Partitioning a weighted tree into subtrees with weights in a given range," Algorithmica, vol. 62, no. 3-4, pp. 823-841, 2012.
[22] B.W. Kernighan, ''Optimal sequential partitions of graphs,'' Journal of the ACM, vol 18, no. 1, pp. 34-40, 1971.
[23] J. Kral, ''To the problem of segmentation of a program,'' Information Processing Machines, pp. 140-149, 1965.
[24] S. Kundu and J. Misra, ''A Linear Tree Partitioning Algorithm,'' SIAM Journal on Computing, vol. 6, no. 1, pp. 151-154, 1977.
[25] J.-J. Lin, C.-Y. Chan, B.-F. Wang, ''Improved algorithms for the continuous tree edge-partition problems and a note on ratio and sorted matrices searches,'' Discrete Applied Mathematics, vol. 158, no. 8, pp. 932-942, 2010.
[26] M. Lucertini, Y. Perl, B. Simeone, '' Most uniform path partitioning and its use in image processing,'' Discrete Applied Mathematics, vol. 42, no. 2-3, pp. 227-256, 1993.
[27] J. A. Lukes, ''Efficient algorithm for the partitioning of trees,'' IBM Journal of Research and Development, vol. 18, no. 3, pp. 217-224, 1974.
[28] N. Megiddo, ''Applying Parallel Computation Algorithms in the Design of Serial Algorithms,'' Journal of the ACM, vol. 30, no.4, pp.852-865, 1983.
[29] N. Megiddo and A. Tamir, ''New results on the complexity of p-center problems,'' SIAM Journal on Computing, vol. 12, no. 4, pp. 751-758, 1983.
[30] N. Megiddo, A. Tamir, E. Zemel, R. Chandrasekaran, ''An O(n log2 n) algorithm for the kth longest path in a tree with applications to location problems,'' SIAM Journal on Computing, vol. 10, no. 2, pp. 328-337, 1981.
[31] Y. Perl and S. Schach, "Max-min tree partitioning," Journal of the ACM, vol. 28, no. 1, pp. 5-15, 1981.
[32] Y. Perl and U. Vishkin, ''Efficient implementation of a shifting algorithm,'' Discrete Applied Mathematics, vol. 12, no. 1, pp. 71-80, 1985.
[33] G. Salton, Dynamic Information and Librar Processing. Prentice-Hall, New Jersey, 1975.
[34] D.C. Tsichritzis, P.A. Bernstein, Operating Systems, Academic Press, New York, 1974.
[35] J.C. Williams, ''Political redistricting: a review,'' Papers in Regional Science, vol. 74, no. 1, 13-40, 1995.
[36] B.Y. Wu, K.-M. Chao, Spanning Trees and Optimization Problems, Chapman and Hall/CRC Press, Boca Raton, Florida, 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *