帳號:guest(18.227.89.244)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林立
作者(外文):Lin, li
論文名稱(中文):基於縮放自商影像的低複雜度之 抗光影變化人臉辨識系統
論文名稱(外文):Low Cost Illumination Invariant Face Recognition by Down-Up Sampling Self Quotient Image
指導教授(中文):邱瀞德
口試委員(中文):張添烜
范倫達
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:100062639
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:49
中文關鍵詞:人臉辨識光影移除
外文關鍵詞:face recognitionillumination invarianceimage scalingquotient image
相關次數:
  • 推薦推薦:0
  • 點閱點閱:398
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
流明改變在一般的環境中常常會造成人臉辨識的效率降低.自商影像(SQI)是一種移除光影變化的方法,但是也需要較多的運算時間.因此,我們提出了一種快速的人臉辨識方法,利用影像縮放來產生自商影像(DUSSQI)的方式來移除光影的影響.而DUSSQI有下列的優點(1)有效的移除光影影響 (2)提取不同的臉部細節,像是材質以及邊緣 (3)由於全域的運算方式降低了計算的花費.我們也使用主成分分析來降低相似度比較過程的運算時間.實驗結果顯示我們的方法在extended YaleB database達到98.3%的辨識率,在FERET database中達到93.8%的辨識率,並且比原本的SQI方法降低了97.1%的計算時間.相似度比較的處理時間與原本沒有使用PCA的DUSSQI相比,降低了70.4%.
Illumination variation generally causes performance degradation of face recognition systems under real-life environments. The Self Quotient Image (SQI) method \cite{SQI} is proposed to remove extrinsic lighting effects but requires high computation complexity. Therefore, we propose a low cost face recognition scheme that uses multi-scale down-up sampling to generate self quotient image (DUSSQI) to remove the lighting effects. The DUSSQI has the following advantages: (1) Remove the lighting influence effectively. (2) Extract different face details including texture and edges. (3) Only global operation on pixels is required to reduce computational cost. We also use principal component analysis (PCA) to reduce the process time in feature similarity comparison stage. Experimental results demonstrate that our proposed approach achieves 98.3\% recognition rate for extended YaleB database and 93.8\% for FERET database under various lighting conditions and reduces 97.1\% computational time compared to that of SQI. The processing time in the similarity comparison stage also reduces 70.4\% compared to that of the original DUSSQI without PCA.
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goal and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Related Works 7
2.1 Appearance Based Approach . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Normalization Based Approach . . . . . . . . . . . . . . . . . . . . 8
2.3 Feature Based Approach . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Self Quotient image . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Proposed Down Up Sampling Self Quotient Image 14
3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Down-up Sampling Self Quotient Image (DUSSQI) . . . . . 17
3.1.2 Contrast Transform . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Weighting Sum . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Fourier Magnitude . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Matching by Cos Distance . . . . . . . . . . . . . . . . . . . 26
3.3.2 Dimensional Reduction by Principal Component Analysis . . 26
4 Experimental Results 32
4.1 Extended YaleB Database . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 FERET Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Dimension Reduction by Principal Component Analysis . . . . . . . 40
5 Conclusions 44
[1] H. Wang, S. Li, and Y. Wang, “Face recognition under varying lighting conditions using self quotient image,“ in Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, 2004, pp. 819-824.
[2] N. McLaughlin, J. Ming, and D. Crookes, "Illumination invariant facial recognition using a piecewise-constant lighting model,“ in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, march 2012, pp. 1537 -1540.
[3] X. Tan and B. Triggs, "Enhanced local texture feature sets for face recognition under dicult lighting conditions,“ Image Processing, IEEE Transactions on, vol. 19, no. 6, pp. 1635-1650, 2010.
[4] W. Chen, M.-J. Er, and S. Wu, "Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 36, no. 2, pp. 458-466, 2006.
[5] T. Zhang, Y.-Y. Tang, B. Fang, Z. Shang, and X. Liu, "Face recognition under varying illumination using gradientfaces," Image Processing, IEEE Transactions on, vol. 18, no. 11, pp. 2599-2606, 2009.
[6] D. Jobson, Z.-u. Rahman, and G. Woodell, "Properties and performance of a center/surround retinex,“ Image Processing, IEEE Transactions on, vol. 6, no. 3, pp. 451-462, 1997.
[7] Z. ur Rahman and G. A. Woodell, “A multiscale retinex for bridging the gap between color images and the human observation of scenes," IEEE Transactions on Image Processing, vol. 6, pp. 965-976, 1997
[8] X. Zou, J. Kittler, and K. Messer, "Illumination invariant face recognition: A survey,“ in Biometrics: Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE International Conference on, 2007, pp. 1-8.
[9] Y. Adini, Y. Moses, and S. Ullman, "Face recognition: the problem of compensating for changes in illumination direction,“ Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, no. 7, pp. 721-732, 1997.
[10] L. Sirovich and M. Kirby, "Low-dimensional procedure for the characterization of human faces," journal of The Optical Society of America A-optics Image Science and Vision, vol. 4, 1987.
[11] M. Turk and A. Pentland, "Eigenfaces for recognition," J. Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, Jan. 1991. [Online]. Available: http://dx.doi.org/10.1162/jocn.1991.3.1.71
[12] G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, "Subspace learning from image gradient orientations," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 12, pp. 2454-2466, 2012.
[13] E. H. Land, John, and J. Mccann, "Lightness and retinex theory," Journal of the Optical Society of America, pp. 1-11, 1971.
[14] Y. Pang, Y. Yuan, and X. Li, "Gabor-based region covariance matrices for face recognition," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 18, no. 7, pp. 989-993, 2008.
[15] B. Zhang, S. Shan, X. Chen, andW. Gao, "Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition," Image Processing, IEEE Transactions on, vol. 16, no. 1, pp. 57-68, 2007.
[16] G. Freedman and R. Fattal, "Image and video upscaling from local self-examples," ACM Trans. Graph., vol. 30, no. 2, pp. 12:1-12:11, Apr. 2011.
[17] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, "Face recognition using laplacianfaces," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 3, pp. 328-340, 2005.
[18] A. Shashua and T. Riklin-Raviv, "The quotient image: class-based rerendering and recognition with varying illuminations," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no. 2, pp. 129-139,2001.
[19] R. Basri and D. Jacobs, "Lambertian reflectance and linear subspaces," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, no. 2,pp. 218-233, 2003.
[20] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, "From few to many: Illumination cone models for face recognition under variable lighting and pose," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 643-660, Jun. 2001. [Online]. Available: http://dx.doi.org/10.1109/34.927464
[21] S. Du, M. Shehata, and W. Badawy, "A novel algorithm for illumination invariant dct-based face recognition," in Electrical Computer Engineering (CCECE), 2012 25th IEEE Canadian Conference on, 2012, pp. 1-4.
[22] V. P. Vishwakarma, S. Pandey, and M. N. Gupta, "An illumination invariant accurate face recognition with down scaling of dct coecients." CIT, vol. 18, no. 1, pp. 53-67, 2010.

[23] T. Chen, W. Yin, X. Sean, Z. Dorin, C. Thomas, and S. Huang, "Total variation models for variable lighting face recognition and uneven background correction," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.
[24] T. Zhang, B. Fang, Y. Yuan, Y. Y. Tang, Z. Shang, D. Li, and F. Lang, "Multiscale facial structure representation
for face recognition under varying illumination," Pattern Recognition, vol. 42, no. 2, pp. 251 - 258, 2009, Learning Semantics from Multimedia Content. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0031320308001210
[25] N. McLaughlin, J. Ming, and D. Crookes, "Illumination invariant facial recognition using a piecewise-constant lighting model," in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, march
2012, pp. 1537 -1540.
[26] T. Ahonen, A. Hadid, and M. Pietikainen, "Face recognition with local binary patterns," in In Proc. of 9th Euro15 We, pp. 469-481.
[27] C.-P. Chen and C.-S. Chen, "Intrinsic illumination subspace for lighting insensitive face recognition," Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 2, pp. 422-433, 2012.
[28] X. Xie, W.-S. Zheng, J. Lai, P. Yuen, and C. Suen, "Normalization of face illumination based on large-and small-scale features," Image Processing, IEEE Transactions on, vol. 20, no. 7, pp. 1807-1821, 2011.
[29] C. Croux and G. Haesbroeck, "Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and eciencies," Biometrika, vol. 87, no. 3, pp. pp. 603-618, 2000. [Online].
Available: http://www.jstor.org/stable/2673633
[30] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, "The feret evaluation methodology for face-recognition algorithms," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 10, pp. 1090-1104, 2000.
[31] A. Georghiades, P. Belhumeur, and D. Kriegman, "From few to many: Illumination cone models for face recognition under variable lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 23, no. 6, pp. 643-660,
2001.






 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *