帳號:guest(52.14.17.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):湯道言
作者(外文):Tang, Tao-Yen
論文名稱(中文):基於隨機抽樣分割之搜尋最近點方法
論文名稱(外文):random exemplar partitioning for approximate nearest neighbor search
指導教授(中文):陳煥宗
指導教授(外文):Chen, Hwann-Tzong
口試委員(中文):劉庭祿
賴尚宏
口試委員(外文):Liu, Tyng-Luh
Lai, Shang-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:100062588
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:30
中文關鍵詞:近似最近點分類器隨機點
外文關鍵詞:approximate nearest neighborclassifierrandom exemplar
相關次數:
  • 推薦推薦:0
  • 點閱點閱:489
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
在這篇論文中,我們提出了一種新的解決問題的方法,通過分區功能空間近似最近鄰居搜索。隨機典範分區算法可以用來生成二進制代碼的數據,以方便在大型數據集的最近鄰居搜索。根據合奏的分類判別式學習的想法,我們制定一種無監督的學習算法,探索功能空間與隨機選擇的典範。三個大型數據集上的實驗結果表明,我們的方法優於現在尖端的技術,尤其是在較長的二進制代碼的情況下。
In this thesis, we present a new method that addresses the problem of approximate nearest neighbor search via partitioning the feature space. The proposed random exemplar partitioning algorithm can be used to generate binary codes of data to facilitate nearest neighbor search within large datasets. Inspired by the idea of using an ensemble of classifiers for discriminative learning, we devise an unsupervised learning algorithm to explore the feature space with respect to randomly selected exemplars.
Experimental results on three large datasets show that our method outperforms the state-of-the-art, especially on the cases of longer binary codes.
1 Introduction
2 RelatedWork
3 Random Exemplar Partitioning
3.1 Gaussian Normal Affinity
3.2 Single and Dyadic Exemplar Selection Schemes
4 Experiments
4.1 Datasets
4.2 Evaluation details
4.3 Results
4.4 Time Complexity of Querying
5 Conclusion
[1] Yali Amit and Donald Geman. Shape quantization and recognition with randomized trees. Neural Computation, 9(7):1545–1588, 1997.
[2] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008.
[3] Jonathan Brandt. Transform coding for fast approximate nearest neighbor search in high dimensions. In CVPR, pages 1815–1822, 2010.
[4] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011.
[6] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13:21–27, 1967.
[7] Dengxin Dai, Mukta Prasad, Christian Leistner, and Luc J. Van Gool. Ensemble
partitioning for unsupervised image categorization. In ECCV (3), pages 483–496,
2012.
[8] Wei Dong, Moses Charikar, and Kai Li. Asymmetric distance estimation with
sketches for similarity search in high-dimensional spaces. In SIGIR, pages 123–130,
2008.
[9] Michael Gharbi, Tomasz Malisiewicz, Sylvain Paris, and Fredo Durand. A gaussian
approximation of feature space for fast image similarity. Technical report, 2012.
27
[10] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions
via hashing. In VLDB, pages 518–529, 1999.
[11] Yunchao Gong and Svetlana Lazebnik. Iterative quantization: A procrustean approach
to learning binary codes. In CVPR, pages 817–824, 2011.
[12] Albert Gordo and Florent Perronnin. Asymmetric distances for binary embeddings.
In CVPR, pages 729–736, 2011.
[13] Kristen Grauman and Trevor Darrell. Pyramid match hashing: Sub-linear time indexing
over partial correspondences. In CVPR, 2007.
[14] Mark J. Huiskes and Michael S. Lew. The mir flickr retrieval evaluation. In MIR ’08:
Proceedings of the 2008 ACM International Conference on Multimedia Information
Retrieval, New York, NY, USA, 2008. ACM.
[15] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In STOC, pages 604–613, 1998.
[16] Mihir Jain, Herv´e J´egou, and Patrick Gros. Asymmetric hamming embedding: taking
the best of our bits for large scale image search. In ACM Multimedia, pages 1441–
1444, 2011.
[17] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In ECCV (1), pages 304–317,
2008.
[18] Herv´e J´egou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE Transactions on Pattern Analysis & Machine Intelligence,
33(1):117–128, jan 2011.
[19] Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, and Qi Tian. Super-bit localitysensitive
hashing. In NIPS, pages 108–116, 2012.
[20] Weihao Kong and Wu-Jun Li. Isotropic hashing. In NIPS, pages 1655–1663, 2012.
28
[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.
[22] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable
image search. In ICCV, pages 2130–2137, 2009.
[23] Vincent Lepetit, Pascal Lagger, and Pascal Fua. Randomized trees for real-time keypoint
recognition. In CVPR (2), pages 775–781, 2005.
[24] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Hashing with graphs. In
ICML, pages 1–8, 2011.
[25] David G. Lowe. Object recognition from local scale-invariant features. In ICCV,
pages 1150–1157, 1999.
[26] Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros. Ensemble of exemplarsvms
for object detection and beyond. In ICCV, pages 89–96, 2011.
[27] Baback Moghaddam and Gregory Shakhnarovich. Boosted dyadic kernel discriminants.
In NIPS, pages 745–752, 2002.
[28] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International Journal of Computer Vision,
42(3):145–175, 2001.
[29] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In NIPS, 2007.
[30] Ruslan Salakhutdinov and Geoffrey E. Hinton. Learning a nonlinear embedding by
preserving class neighbourhood structure. Journal of Machine Learning Research -
Proceedings Track, 2:412–419, 2007.
[31] Ruslan Salakhutdinov and Geoffrey E. Hinton. Semantic hashing. Int. J. Approx.
Reasoning, 50(7):969–978, 2009.
[32] Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods
in learning and vision. IEEE Transactions on Neural Networks, 19(2):377, 2008.
29
[33] Antonio Torralba, Robert Fergus, and William T. Freeman. 80 million tiny images:
A large data set for nonparametric object and scene recognition. IEEE Trans. Pattern
Anal. Mach. Intell., 30(11):1958–1970, 2008.
[34] Yair Weiss, Rob Fergus, and Antonio Torralba. Multidimensional spectral hashing.
In ECCV (5), pages 340–353, 2012.
[35] Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In NIPS, pages
1753–1760, 2008.
[36] Jay Yagnik, Dennis Strelow, David A. Ross, and Ruei-Sung Lin. The power of comparative
reasoning. In ICCV, pages 2431–2438, 2011.
[37] Dell Zhang, Jun Wang, Deng Cai, and Jinsong
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *