帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡子凱
論文名稱(中文):辨識一個無法繞線的配置之研究
論文名稱(外文):A Study on Unroutable Placement Recognition
指導教授(中文):王廷基
口試委員(中文):李毅郞
陳宏明
王廷基
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:100062578
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:30
中文關鍵詞:配置器全域繞線
相關次數:
  • 推薦推薦:0
  • 點閱點閱:371
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
為了避免產生無法繞線的配置,許多可繞性導向的擺放配置器採用全域繞線器來評估它們配置的結果,但是利用全域繞線器來評估一個配置會有以下幾個問題: (1) 全域繞線器會花很多的時間在一個很難被繞線的配置,(2) 因為考慮到時間,全域繞線器會粗略的去繞一個配置,這可能會使得評估這個配置的結果不準確,(3) 大部分的全域繞線器沒有考慮到時序的限制。
因此,這篇論文提出一個效率極高的無法繞線之配置的辨識器,其中包含了window-based 以及cutline-based這兩個方法。window-based 這個方法可以正確的辨識一個配置是否可以繞線並且可以指出一個配置的無法繞線的區域,以及可以回報一個配置它的全部溢出的下限值。如果考慮到時序的限制,cutline-based 的方法能夠偵測一個配置是否可以被繞線。實驗結果顯示window-based 的方法能夠找出23個現今常被使用的極難被繞線的全域繞線基準中的16個基準,當我們考慮時序的限制,cutline-based 的方法能夠顯示出很多個基準它是無法繞線。
Chapter 1 Introduction
Chapter 2 Preliminaries
2.1 Global Routing Problem
2.2 The Objective of This Thesis
Chapter 3 Window-based Unroutable Region Recgonition
3.1 Layout Scanning Algorithm
3.2 Window Dimension Determination
3.3 Lower Bound of Total Overflow Identification
Chapter 4 Cutline-based Unroutable Panel Recognition
Chapter 5 Experimental Results
5.1 Unroutable region recognition by different window dimensions
5.2 The parallelism of window-based unroutable region recognition
5.3 Effectiveness of the window dimension determination method
5.4 Lower bound of total overflow
5.5 Effectiveness of unroutable panel recognition
Conclusion
Bibliography

[1] ISPD 2008 Global Routing Contest and Benchmark Suite. Available: http://archive.sigda.org/ispd2008/contests/ispd08rc.html
[2] M. D. Moffitt and C. N. Sze, “Wire synthesizable global routing for timing closure,” in Proceeding if Asia and South Pacific Design Automation Conference, pp. 545-550, 2011.
[3] J. Hu et al, “Completing high-quality global routes,” in Proceeding of International Conference on Computer-Aided Design, pp. 35-41, 2010.
[4] H.-Y. Chen et al. “High-performance global routing with fast overflow reduction.” in Proceeding if Asia and South Pacific Design Automation Conference, pp. 582-587, 2009.
[5] Y. Xu and C. Chu, “MGR: Multi-level global router,” in Proceedings International Conference on Computer-Aided Design, pp.250-255, 2011.
[6] Y.-J. Chang et al, “NTHU-Route 2.0: a fast and stable global router,” in Proceedings International Conference on Computer-Aided Design, pp. 338-343, 2008.
[7] Y.-J. Chang et al., “GLADE: A modern global router considering layer directives,” in Proceedings International Conference on Computer-Aided Design, pp.319-323, 2010.
[8] W.-H. Liu et al., “Multi-threaded collision-aware global routing with bounded-length maze routing,” in Proceedings Design Automation Conference, pp. 200-205, 2010.
[9] K.-R. Dai et al., “NCTU-GR: efficient simulated evolution-based rerouting and congestion-relaxed layer assignment on 3-D global routing,” IEEE TVLSI, 20(3), pp. 459-472, 2012.
[10] ISPD 2011 Routability-driven Placement Contest and Benchmark Suite. Available: http://www.ispd.cc/contests/11/ispd2011_contest.html
[11] H. Shojaei et al., “Congestion analysis for global routing via integer programming,” in Proceedings International Conference on Computer-Aided Design, pp. 256-262, 2011.
[12] W.-H. Liu et al., “A fast maze-free routing congestion estimator with hybrid unilateral monotonic routing,” in Proceedings International Conference on Computer-Aided Design, pp. 713-719, 2012.
[13] X. He, T. Huang, L. Xiao, H. Tian, G. Cui, E. F.Y. Young, “Ripple: an effective routability-driven placer by iterative cell movement”, in Proceedings International Conference on Computer-Aided Design, pages 74–79, 2011.
[14] M.-C. Kim, J. Hu, D.-J. Lee, I. L. Markov, “A SimPLR method for routability-driven placement”, in Proceedings International Conference on Computer-Aided Design, pages 80–84, 2011.
[15] J. Hu, M.-C. Kim, I. L. Markov, “Taming the complexity of coordinated place and route,” in Proceedings Design Automation Conference, 2013.
[16] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam, W. Cai, E. F.Y. Young, “Ripple 2.0: High quality routability-driven placement via global router integration,” in Proceedings Design Automation Conference, 2013.
[17] W.-H. Liu, C.-K. Koh, Y.-L. Li, “Optimization of placement solutions for routability,” in Proceedings Design Automation Conference, 2013.
[18] M. D. Moffitt, “Global routing revisited,” in Proceedings International Conference on Computer-Aided Design, pp. 805-808, 2009.
[19] B. S. Baker, “Approximation algorithms for NP-complete problems on planar graphs,” Journal of the ACM, 41(1), pp. 153–180, 1994.
[20] S. Masuda and K. Nakajima, “An optimal algorithm for finding a maximum independent set of a circular-arc graph,” in SIAM Journal on Computing, 17(1), pp. 41-52.
[21] F.-Y. Chang et al., “Cut-Demand Based Routing Resource Allocation and Consolidation for Routability Enhancement,” in Proceeding if Asia and South Pacific Design Automation Conference, pp. 533–538, 2011.
[22] Y. Wei, Zhuo Li, Cliff C. N. Sze, Shiyan Hu, Charles J. Alpert, Sachin S. Sapatnekar, “CATALYST: planning layer directives for effective design closure,” DATE 2013, pp. 1873-1878.
[23] W.-H. Liu, Yaoguang Wei, Cliff C. N. Sze, Charles J. Alpert, Zhuo Li, Yih-Lang Li, Natarajan Viswanathan: Routing congestion estimation with real design constraints. in Proceedings Design Automation Conference, No. 92, 2013.
[24] J. G. Oxley, “Matroid Theory,” Oxford University Press, 1992.
http://en.wikipedia.org/wiki/Activity_selection_problem
[25] M.-K. Hsu, S. Chou, T.-H. Lin, Y.-W. Chang, “Routability-driven analytical placement for mixed-size circuit designs”, in Proceedings International Conference on Computer-Aided Design, pages 80–84, 2011.
[26] Jason Cong, G. Luo, K. Tsota, B. Xiao, “Optimizing routability in large-scale mixed-size placement,” in Proceedings Asia and South Pacific Design Automation Conference, pp.441-446, 2013.
[27] ISPD 2011 Routability-driven Placement Contest and Benchmark Suite. Available: http://www.ispd.cc/contests/11/ispd2011_contest.html
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *