|
【1】 Felix Weninger, Noam Amir, Ofer Amir, Irit Ronen, Florian Eyben, and Bjorn Schuller, Robust feature extraction for automatic recognition of vibrato singing in recorded polyphonic music, ICASSP , 2012. 【2】 S. J. Young, G. Evermann, M. J. F. Gales, D. Kershaw, G. Moore, J. J. Odell, D. G. Ollason, D. Povey, V. Valtchev, and P. C. Woodland, The HTK book version 3.4, Cambridge University Engineering Department, Cambridge, UK, 2006. 【3】 Sundberg, Johan, Acoustic and psychoacoustic aspects of vocal vibrato, 2010. 【4】 D. J. Hermes, Measurement of pitch by subharmonic summation, Journal of the Acoustical Society of America, vol. 83, no. 1, pp. 257–264, 1988. 【5】 Fredrick Jelinek, Design of a Linguistic Statistical Decoder for the Recognition of Continuous Speech, IEEE Transactions on Information Theory, VOL. IT-21, NO. 3, May 1975. 【6】 Jyh-Shing Roger Jang, Data Clustering and Pattern Recognition (資料群聚與樣式辨認) 9-3 Continuous HMM. 【7】 Ren Gang, Justin Lundberg, Gregory Bocko, Dave Headlam, and Mark F. Bocko, What makes music musical? A framework for extracting performance expression and emotion in musical sound, DSP/SPE, 2011. 【8】 Bradley, A.P. The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30. 1145-1159, 1997. 【9】 Swets, John A.Signal detection theory and ROC analysis in psychology and diagnostics: collected papers Lawrence Erlbaum Associates, Mahwah, NJ, 1996. 【10】 Chao-Ling Hsu, DeLiang Wang, and Jyh-Shing Roger Jang, A trend estimation algorithm for singing pitch detection in musical recordings, ICASSP, 2011. 【11】 Belle A. Shenoi, Introduction to digital signal processing and filter design, John Wiley and Sons. p. 120. 2006.
|