帳號:guest(18.117.158.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉子豪
作者(外文):Yeh, Tsu-Hao
論文名稱(中文):具超電容儲能及太陽光伏輔助能源收集之電動車內置磁石永磁同步馬達驅動系統
論文名稱(外文):AN ELECTRIC VEHICLE IPMSM MOTOR DRIVE WITH SUPERCAPACITOR ENERGY STORAGE AND PHOTOVOLTAIC AUXILIARY ENERGY HARVESTING
指導教授(中文):廖聰明
指導教授(外文):Liao, Chang-Ming
口試委員(中文):陳盛基
李建興
口試委員(外文):Sheng-Chi Chen
Chien-Hsing Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061631
出版年(民國):103
畢業學年度:102
語文別:英文中文
論文頁數:161
中文關鍵詞:永磁同步馬達電動車超電容無位置感測控制電網至車輛車輛至家庭變頻器再生煞車
外文關鍵詞:Permanent-magnet synchronous motorelectric vehiclesupercapacitorsensorless controlgrid-to-vehiclevehicle-to-homeinverterregenerative breaking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:362
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
本論文旨在開發一電動車用內置磁石永磁同步馬達驅動系統,其配備超電容儲能以及太陽光伏能源收集裝置。蓄電池組經由交錯式升/降壓直流-直流轉換器建立一提升之直流鏈電壓。至於超電容,係以一單向降壓直流-直流轉換器為介面接至直流鏈,並經由一功率二極體與蓄電池相連。於再生煞車時,儲存於輪軸之動能先回充儲存於超電容,再對蓄電池充電。反之,超電容可放能協助電動車之加速驅動操作。透過電力電路及控制機構之妥善設計,所建構之電動車永磁同步馬達驅動系統具有良好之驅控性能,包含啟動、加/減速、及再生煞車等特性。此外,本論文提出改良之高頻注入無位置感測控制方法,使驅動系統具有媲美於標準驅動系統之操控性能。所提方法係藉由變化注入信號之頻率,以避免內置磁石永磁同步馬達反電動勢之諧波效應。
於閒置狀態下,所開發永磁同步馬達驅動系統之電力電路,經適當安排可執行電網至車輛及車輛至家庭等操作。在電網至車輛操作中,可獲得良好充電性能以及交流入電電力品質。至於車輛至家庭之操作,以既有馬達驅動系統電力電路組接建構一單相三線式變頻器,藉由所提之差模與共模控制機構,所建變頻器可轉出良好波形品質之60Hz 220/110V交流電供給家用電器。最後探究以所建單相三線式變頻器從事車輛至電網操作之控制架構,並以模擬驗證其可行性及操控特性。
This thesis develops an electric vehicle (EV) interior permanent-magnet synchronous motor (IPMSM) drive equipped with supercapacitor (SC) energy storage and photovoltaic (PV) energy harvesting devices. The boosted DC-link voltage is established from the battery set via an interleaved boost-buck DC/DC converter. As to the SC, it is interfaced to the DC-link using a unidirectional buck DC/DC converter and connected to the battery set through a power diode. During regenerative braking, the stored kinetic energy is first recovered to the SC, and then charged the battery set. Conversely, the SC can discharge its stored energy to assist the accelerative driving. Through proper schematic and control scheme designs, the established standard EV IPMSM drive possesses good driving performance, including starting, acceleration/deceleration, reversible and regenerative braking operation characteristics. Moreover, an improved high-frequency signal injection (HFI) position sensorless control method is proposed to let the sensorless EV IPMSM drive preserve the performances comparable to those of standard IPMSM drive. The varied injection frequency of HFI scheme is proposed to avoid the back-EMF harmonic effects possessed by IPMSM.
In idle condition, the developed PMSM drive can perform G2V and V2H operations with the integrated schematics being formed using the embedded components in the EV IPMSM drive. In G2V operation, good battery charging performance and line drawn power quality are obtained. As to the V2H operation, by applying the differential mode (DM) and common mode (CM) control approaches, the 220V/110V 60Hz AC output voltages with good waveform quality are generated from the battery by the established single-phase three-wire (1P3W) inverter to power home appliances. Finally, the exploration of V2G operation control using the established 1P3W inverter is made. And its feasibility and operation characteristics are verified by simulation.
誌謝 .
摘要
目錄
第一章、簡介
第二章、電動車及永磁同步馬達驅動概觀
第三章、電動車內置磁石永磁同步馬達驅動系統開發
第四章、具超電容能量儲存與太陽光伏能量收集之標準電動車內置磁石永磁同步馬達驅動系統
第五章、永磁同步馬達驅動系統之電網至車輛充電操作
第六章、永磁同步馬達驅動系統之車輛至家庭放電操作
第七章、結論
附錄: 英文論文
A. Electric Vehicles
[1] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 736-770, 2005.
[2] G. Yimin and M. Ehsani, “Design and control methodology of plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
[3] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[4] A. G. Boulanger, A. C. Chu, S. Maxx and D. L. Waltz, “Vehicle electrification: status and issues,” in Proc. IEEE, vol. 99, no. 6, pp. 1116-1138, 2011.
[5] B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[6] M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
[7] S. Haghbin, S Lundmark, M Alakula and O Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
[8] U. K. Madawala and D. J. Thrimawithana, “Bidirectional inductive power interface for electric vehicle in V2G systems,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789-4796, 2011.
[9] D. P. Tuttle and R. Baldick, “The evolution of plug-in electric vehicle-grid interactions,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 500-515, 2012.
[10] E. S. Dehaghani and S. S. Williamson, “On the inefficiency of vehicle-to-grid (V2G) power flow: potential barriers and possible research directions,” in Proc. IEEE ITEC, pp. 1-5, 2012.
[11] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya and A. Huang, “Multi-finction bi-directional battery charger for plug-in hybrid electric vehicle electric vehicle application,” in Proc. IEEE ECCE, pp. 3930-3936, 2009.
[12] M. Becherif, M. Y. Ayad, D. Hissel and R. Mkahl, “Design and sizing of a standard-alone recharging point for battery electrical vehicles using photovoltaic energy,” in Proc. IEEE VPPC, pp. 1-6, 2011.
[13] Yu Du, S. Lukic, B. Jacobson and A. Huang, “A review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, pp. 553-560, 2011.
[14] O.C. Onar, J. Kobayashi, and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018–2032, Jun. 2012.
[15] M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electrics for bidirectional power between the electric vehicle and DC or AC grid,” in Proc. IEEE ECCE, 2012, pp. 3403-3410.
[16] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, 2013.
[17] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[18] G. Pellegrino, A. Vagati, B. Boazzo and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol.48, no. 6, pp.2322-2332, 2012.
[19] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 2nd ed. New York: Wiley-IEEE, 2002.
B. Permanent-Magnet Synchronous Motor Drives
Equivalent circuit modeling and parameter estimation
[20] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[21] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
[22] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine”, IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002.
[23] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[24] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets”, IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[25] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
[26] X. Jannot, J. C. Vannier, C. Marchand, M. Gabsi, J. Saint-Michel and D. Sadarnac, “Multi-physic modeling of a high-Speed interior permanent-magnet synchronous machine for a multiobjective optimal design, ” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 457-467, 2011.
Current Control
[27] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[28] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM synchronous motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 56-63.
[29] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000.
[30] W. T. Su and C. M. Liaw, “Adaptive positioning control for a LPMSM Drive based on adapted inverse model and robust disturbance observer,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 505-517, 2006.
[31] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of- freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[32] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[33] A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[34] W. Joerg, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4316-4353, 2008.
[35] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Direct torque control
[36] Y. A. R. I. Mohamed, “Direct instantaneous torque control in direct drive permanent magnet synchronous motors a new approach,” IEEE Trans. Energy Convers., vol. 22, no. 4, pp. 829-838, 2007.
[37] Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, 2010.
[38] S. Kar and S. K. Mishra, “Direc torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
Speed control
[39] Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
[40] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[41] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear control by input-output linearization scheme for EV permanent magnet synchronous motor,” in Proc. IEEE VPPC, 2007, pp. 185-190.
[42] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[43] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[44] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” in Proc. IEEE CCC, 2012, pp. 4412-4417.
Voltage boosting and pulse amplitude modulation
[45] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004.
[46] A. Kawahashi, “A new-generation hybrid electric vehicle and its supporting power semiconductor devices,” in Proc. ISPSD, 2004, pp. 23-29.
[47] K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 793-798.
[48] T. A. Burress, S. L. Campbell, C. L. Coomer, C.W. Ayers, A. A. Wereszczak, J. P. Cunningham, L. D. Marlino, L. E. Seiber, H. T. Lin, “Evaluation of the 2010 Toyota Prius hybrid synergy drive sysem,” Technical Report ORNL/TM-2010/ 253, 2010.
[49] H. C. Chang and C. M. Liaw, ‘‘On the front-end converter and its control for a battery powered switched-reluctance motor drive,’’ IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[50] H. C. Chang and C. M. Liaw, ‘‘Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,’’ IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[51] J. Y. Chai, Y. C. Chang and C. M. Liaw, ‘‘On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,’’ IEEE Trans Power Electron., vol. 25, no. 5, pp.1135-1148, 2010.
Field-weakening control
[52] S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
[53] J. H. Song, J. M. Kim and S. K. Sul, “A new robust SPMSM control to parameter variations in flux weakening region,” in Proc. IECON, 1996, vol. 2, pp.1193-1198.
[54] D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IECON, 1998, vol. 1, pp. 508-512.
[55] T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
[56] G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
[57] T. Miyajima, H. Fujimoto and M. Fujitsuna, “Direct voltage vector control for field weakening operation of PM machines,” in Proc. IEEE ECCE, 2011, pp. 1392-1397.
[58] D. Strojan, D. Drevensek, Z. Plantic, B. Grcar and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012.
[59] S. Chaithongsuk, B. Nahid-Mobarakeh, J. P. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[60] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM, and SynRM in use as air­ conditioning compressor,” in Conf. Rec. IEEE-IAS Annu. Meeting, vol. 2, pp. 840-845, Oct. 1999.
C. Supercapacitor and Photovoltaic applied in EVs
[61] M. Zandi, A. Payman, J. P. Martin, S. Pierfederici, B. Davat, and F. M. Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 433-443, Feb. 2011.
[62] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell vehicles,” in Proc. IEEE, 2007, vol. 95, no. 4, pp. 806-820.
[63] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-In hybrid electric vehicles: state of the art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806-2814, 2010.
[64] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W. Prochazka, “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
[65] A. Ostadi, M. Kazerani and S. K. Chen, “Hybrid energy storage (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” IEEE Trans. ITEC., pp. 1-7, 2013.
[66] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electronics, vol. 27, no. 1, pp. 122-132, Jan. 2012.
[67] O. C. Onar and A. Khaligh, “A novel integrated magnetic structure based dc/dc converter for hybrid battery/ultracapacitor energy storage systems,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 296-307, Mar. 2012.
[68] L. Shuai, K. A. Corzine, and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, Jul. 2007.
[69] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor- based regenerative controlled electric drives with power- smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511- 4522, Dec. 2012.
[70] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940–5948, Dec. 2013.
[71] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806–820, Apr. 2007.
[72] S. Vazquez, S. Lukic, E. Galvan, L. Franquelo, J. Carrasco, J. Leon and J. Hilton, “Recent advances on energy storage systems,” in Proc. IEEE Ind. Electron., pp. 4636–4640, Nov. 2011.
[73] W. F. Infante, A. F. Khan, N. J. C. Libatique, G. L. Tangonan and S.N.Y. Uy, ‘‘Performance evaluation of series hybrid and pure electric vehicles using lead-acid batteries and supercapacitors,” in Proc. IEEE TENCON, pp. 1-5, 2012.
[74] M. Neenu and S. Muthukumaran, ‘‘A battery with ultracapacitor hybrid energy storage system in electric vehicles,’’ in Proc. IEEE ICAESM, pp. 731-735. 2012.
[75] A. Ostadi and S. K. Chen, ‘‘Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,’’ in Proc. IEEE ITEC, pp. 1-7, 2013.
[76] C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516–2520, Nov. 7–10, 2010.
[77] X. Li, L. Lopes and S. Williamson, “On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy,” in Proc. IEEE PES., pp. 1-8 July 2009.
[78] J. Traube, F. Lu, D. Maksimovic, J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, and L. Casey, “Mitigation of solar irradiance intermittency in photovoltaic power systems with integrated electric-vehicle charging functionality,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3058-3067, Jun. 2013.
[79] S. A. Zabalawi, G. Mandic and A. Nasiri, "Utilizing energy storage with PV for residential and commercial use," in Proc. IEEE Conf. Ind. Electron., pp. 1045-1050, 2008.
[80] J. Traube, F. Lu and D. Maksimovic, “Electric vehicle DC charger integrated within a photovoltaic power system,” in Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 352-358, Feb. 5-9, 2012.
[81] V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571-1581, Apr. 2013.
D. Position Sensorless Control Methods
Based on the derived variables or identified parameters
[82] D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless control of PM synchronous motors and brushless DC motors-an overview and evaluation,” in European Conference on Power Electronics and Applications, 2005, pp. 1-10.
[83] A. H. Wijenayake, J. M. Bailey and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
[84] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
[85] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303.
[86] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[87] M. Preindl and E. Schaltz, “Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4087-4095, 2012.
[88] M. Hinkkanen, T. Tuovinen, L. Harnefors and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012.
Back-EMF methods
[89] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in IEE Proc. Electric Power Appl., 2001, vol. 147, no. 6, pp. 503-512.
[90] F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[91] Z. Wang, K. Lu and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012.
[92] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668, 2010.
[93] Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
[94] S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
Observer based methods
[95] J. Kim and S. K. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
[96] J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
[97] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[98] M. Boussak, "Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for IPMSM drive", IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1413-1422, 2005.
[99] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[100] J. Lee, J. Hong, K. Nam, R. Ortega and L. Praly, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010.
Intelligent methods
[101] J. Cao, B. Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE ROBIO, 2007, pp. 1900-1905.
[102] S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
Methods based on rotor magnet saliency
[103] P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995.
[104] S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998.
[105] F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[106] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668.
[107] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[108] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[109] Y. Jeong, R. D. Lorenz, T. M. Jahns and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[110] N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM machines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp.1190-1198, 2008.
[111] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
[112] L. Jingbo, T. Nondahl, P. Schmidt, S. Royak and M. Harbaugh, “An on-line position error compensation method for sensorless IPM motor drives using high frequency injection,” in Proc. IEEE ECCE, 2009, pp. 1946-1953.
[113] D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[114] H. W. De Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[115] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[116] J. Bocker and C. Kroger, “Control of permanent magnet synchronous motor with dual-mode position estimation,” European Conf. on Power Electron. and Appl., 2005, pp. 1-10.
[117] J. H. Lee, T. W. Kong and W. C. Lee, “A new hybrid sensorless method using a back EMF estimator and a current model of permanent magnet synchronous motor” in Proc. IEEE PESC, 2008, pp. 4256-4262.
[118] K. Ide, H. Iura and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method” in Proc. IEEE IECON, 2010, pp. 2236-2241.
[119] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
[120] I. Hideaki, I. Masanobu, K. Takeshi and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[121] S. Bolognani, S. Calligaro, R. Petrella and M. Tursini, “Sensorless control of IPM Motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
E. PWM Inverters
[122] M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[123] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
[124] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[125] Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
[126] B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost inverter-topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
[127] B. Koushki and J. Ghaisari “A voltage reference design for three-phase boost inverter,” in Proc. IEEE EURCON, 2009, pp. 650-654.
[128] O. Dordevic, M. Jones and E. Levi “A space vector PWM algorithm for a three-level seven-phase voltage source inverter,” in Proc. EPE’11, 2011, pp.1-11.
[129] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
[130] C. Hou, C. Shih, P. Cheng and A. M. Hava “Common-node voltage reduction pulse-width modulation techniques for three-phase grid connected converters,” IEEE Trans. Ind. Electron., vol. 28, no. 4, pp. 1971-1979, 2013.
[131] T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737.
[132] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., 1994, vol. 141, no. 4, pp. 197-205.
[133] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
[134] R. González, E. Gubia, J. López and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008.
[135] H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 93-101, 2009.
F. Front-end Converters and Switch-mode Rectifiers
[136] F. Caricchi, F. Crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[137] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel, boost DC-DC conversion structure,” in Proc. IEEE Power Electron. Transp. Conf., 1998, pp. 11-19.
[138] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[139] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[140] Z. Ouyang, O. C. Thomsen, M. A. E. Andersen, O. Poulsen and T. Bjorklund, “New geometry integrated inductors in two-channel interleaved bidirectional converter,” in Proc. IEEE IECON, 2010, pp. 588-592.
[141] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[142] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[143] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[144] M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[145] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[146] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004.
[147] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Electric Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
[148] J. Y. Chai, Y. H. Ho, Y. C. Chang and C. M. Liaw, “On acoustic noise reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1295-1309, 2008.
G. Others
[149] Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn/ tms320f28335.
[150] Y. S. Lin, “An Electric Vehicle Interior Permanent-Magnet Synchronous Motor Drive with Interleaving Bidirectional Interface DC/DC Converter and Grid-to-Vehicle/Vehicle-to-Grid Functions,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2013.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *