帳號:guest(18.118.151.84)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠宇
作者(外文):Chen, Kuan-Yu
論文名稱(中文):以雙重解偶框重複控制法改善微電網孤島模式之負載諧波設計與實作
論文名稱(外文):Design and Implementations of Improving Load Harmonics in Islanding Operations of Micro-Grids by Using Repetitive Control under the Double Decoupled Reference Frame
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia-Chi
口試委員(中文):吳有基
張偉能
侯中權
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061596
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:79
中文關鍵詞:電壓源轉換器總諧波畸變率重複控制雙重解偶同步參考框
外文關鍵詞:Voltage source converter (VSC)Total harmonic distortion (THD)Repetitive controlDouble decoupled synchronous reference frame (DDSRF)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:380
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
在電子電力裝置中,以定電壓定頻率(CVCF) 空間向量脈衝寬度調變(SVPWM)的電壓源轉換器(VSC) 為主要核心的不斷電系統(UPS)系統在蓄電池後備供電系統和微電網系統中得到了廣泛的應用,其輸出電壓波型的主要要求包括:穩態時的總諧波畸變率低(THD),以及可以抑制不平衡負載所造成的電壓不平衡效果還有在換載時能有快速的暫態響應,而在本文中的控制器這三項輸出電壓要求都可以達到良好的效果。
在本文中研究了電壓源轉換器(VSC)的雙迴圈控制,首先以重複控制來實現外迴圈電壓控制用來減少由非線性負載所造成的電壓低階諧波並將FIR數位濾波器引入到設計中,之後再利用雙重解偶同步參考框(DDSRF)來當作內迴圈電流控制的方法,可以有效的控制PCC點上的電壓正負序成分來改善電壓不平衡的情況,並且消除因為控制正負序所造成的二倍頻擾動效應,除此之外還研究了重複控制的原理,穩定性,誤差收斂性,並對於重複控制器中Q(z)的幾種設計方法進行了簡單的介紹,比較了各種設計方法的優缺點。
此控制策略已經用PSCAD模擬程式驗證,並且用實際1KVA功率提供三相線對線220V交流電壓但在換載條件下時系統為2KVA功率,基頻為60Hz實驗室規格的VSC在負載為線性負載,不平衡負載,非線性負載三種不同情況下進行了實驗驗證效果皆與模擬結果相差不遠。

In the power electronic equipment, the uninterruptible power supply (UPS) systems are widely used whose core is a CVCF SVPWM voltage source converter. The technical characters of the output voltage waveform consist of low total harmonic distortion (THD) at steady state, and mitigate the unbalanced voltage caused by unbalanced load and the rapid transient response.
In this thesis, the dual-loop control of the VSC is studied. Not only using the repetitive control to imply the outer loop voltage controller to reduce the low harmonic of the voltage, but also using the double decoupled synchronous frame (DDSRF) to be the inner loop current controller to efficiently control the positive- and negative-sequence component of the voltage at the PCC to improve the voltage unbalanced situation, beside the repetitive control principle, stability and the eroor convergence rate are also studied.
The proposed control strategy has been validated through PSCAD simulations, and implemented as a laboratory-scale VSC system providing a 1KVA power to a three-phase 220V AC voltage with a fundamental frequency of 60 Hz.
Abstract
摘要
Acknowledgements
Contents
Chapter 1 Introduction
1.1 Background and motivation
1.2 The application of the high voltage inverter
1.3 The VSC control technology review
1.4 Purpose of the thesis and main contributions
1.4.1 Main contribution
1.5 Thesis outline
Chapter 2 Basic Repetitive Control Theory
2.1 Introduction
2.2 Repetitive Control Theory
2.3 System Structure
2.4 Performance Indicator
2.4.1 Stability 13
2.4.2 Error Convergence Rate
2.4.3 The Steady State Error
2.5 Embedded Repetitive Control System Analysis and Improvement
2.5.1 The Main Role of The Feed-forward Term
2.5.2 The effect by the delay of the plant and the controller to the system
2.5.3 The common design methods of the filter
2.6 Conclusion
Chapter 3 The VSC Control Theory
3.1 Introduction
3.2 Main Circuit Structure and Modeling
3.2.1 General Description
3.2.2 Voltage-Sourced-Converter
3.3 Control of VSC
3.3.1 Synchronous Reference Frame Current-Controller
3.3.2 Double Synchronous Reference Frame (DSRF) Current-Controller
3.3.3 Enhanced Decoupled Double Synchronous Reference Frame Current Controller
3.4 The repetitive voltage control
3.5 Conclusion
Chapter 4 Hardware Implementation
4.1 Introduction
4.2 Voltage source converter (VSC) platform
4.2.1 DC power supply
4.2.2 Sensor board
4.2.3 Protection board
4.2.4 Digital signal processor (DSP)
4.2.5 Power stage
4.2.6 Gate driver
4.3 System parameter
4.3.1 Selection of the DC side voltage
4.3.1 Selection of the AC side filter design
4.4 Conclusion
Chapter 5 Simulation and Hardware Experiments
5.1 Introduction
5.2 Steady state under balanced load condition
5.3 Steady state under unbalanced load condition
5.4 Steady state under nonlinear load condition
5.5 Transient performance under different load change condition
5.5.1 Under balanced load change condition
5.5.2 Under unbalanced load change condition
5.6 Conclusion
Chapter 6 Conclusion and Future Scope
6.1 Conclusion
6.2 Future scope
Reference
[1] J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining control strategies for analysing microgrids islanded operation,” in Proc. IEEE St. Petersburg Power Tech, St. Petersburg, Russia, 2005.

[2] R. Lasseter and P. Piagi, “Providing premium power through distributed resources,” in Proc. 33rd Hawaii Int. Conf. System Science, vol. 4, Jan. 2000.

[3] Kalyan P.Gokhale, Atsuo Kawamura, Richard Hoft. “Deadbeat Microprocessor Control of PWM Inverter for Sinusoidal Output Waveform Synthesis,” PESC'85,pp.28-36, 1985.

[4] Naser M. Abdel-Rahim,John E. Quaicoe. “Analysis and Design of a Multiple Feedback Loop Control Strategy for Single-Phase Voltage-Source UPS Inverters,” IEEE Trans. Power Appli., vol.11, no.4, pp.532-541, July 1996.

[5] Shih-Liang Jung, Lien-Hsun Ho, Hsing-Chung Yeh, Ying-Yu Tzou. “DSP-Based Digital Control of a PWM Inverter for Sine Wave Tracking by Optimal State Feedback Technique,” IEEE-PESC’94 Conf. Rec., pp.546-551, 1994.

[6] Coser, G. Anwar, M. Tomizuka. “Plug in Repetitive Control for Industrial Robotic Manipulators,” Proceedings of the IEEE International Conference on Robotic and Automation, 1990.

[7] J. Driesen and F. Katiraei, “Design for distributed energy resources,” IEEE Power Energy Mag., vol. 6, no. 3, pp. 30–40, May/Jun. 2008.

[8] M. Steinbuch, “Repetitive control for systems with uncertain period-time,” Automatica, vol. 38, no. 12, pp. 2103–2109, Dec. 2002

[9] H. Karimi, H. Nikkhajoei, and R. Iravani, “A linear quadratic Gaussian controller for a stand-alone distributed resource unit-simulation case studies” presented at the IEEE Power Eng. Soc. General Meeting, Tampa, FL, Jun. 2007.

[10] B. A. Francis and W. M. Wonham, “The internal model principle for linear multivariable regulators,” Appl. Math. Optim., vol. 2, no. 4, pp.170–194, Dec. 1975

[11] J. Driesen and F. Katiraei, “Design for distributed energy resources,” IEEE Power Energy Mag., vol. 6, no. 3, pp. 30–40, May/Jun. 2008.

[12] H. Karimi, H. Nikkhajoei, and R. Iravani, “A linear quadratic Gaussian controller for a stand-alone distributed resource unit-simulation case studies” presented at the IEEE Power Eng. Soc. General Meeting, Tampa, FL, Jun. 2007.

[13] H. Karimi, H. Nikkhajoei, and M. R. Iravani, “Control of an lectronically-coupled distributed resource unit subsequent to an islanding event,” IEEE Trans. Power Del., vol. 23, no. 1, pp. 493–501, Jan. 2008.

[14] C. K. Sao, “Autonomous load sharing of voltage source inverters,” M.A.Sc. dissertation, Univ. Toronto, Toronto, ON, Canada, 2002.
[15] M. Steinbuch, “Repetitive control for systems with uncertain period-time,” Automatica, vol. 38, no. 12, pp. 2103–2109, Dec. 2002.

[16] F. R. Shaw and K. Srinivasan, “Discrete-time repetitive control system design using the regeneration spectrum,” ASME J. Dynamic Syst., Meas., Control, vol. 115, no. 2, pp. 228–237, Jun. 1993.

[17] Delghavi,M.B., Yazdani,A. “Islanded-Mode Control of Electronically Coupled Distributed-Resource Units Under Unbalanced and Nonlinear Load Conditions” IEEE Trans on Power Delivery, vol. 26, pp661-673, April 2011,

[18] Escobar,G.; Valdez,A.A.; Leyva-Ramos,J.; Mattavelli,P. “Repetitive-Based Controller for a UPS Inverter to Compensate Unbalance and Harmonic Distortion” IEEE Trans on Industrial Electronics, vol. 54, pp504-510,Feb 2007.

[19] Xin Tang; Tsang,K.M.; Chan,W.L. “A Power Quality Compensator With DG Interface Capability Using Repetitive Control” IEEE Trans on Energy Conversion, IEEE, vol. 27, pp213-219, Feb 2012

[20] R. H. Park, “Two-reaction theory of synchronous machines generalized method of
analysis-part i,” Trans. of the American Institute of Electrical Engineers, vol. 48,
pp. 716 –727, Jul. 1929.

[21] C. D. Schauder and R. Caddy, “Current control of voltage-source inverters for fast
four-quadrant drive performance,” IEEE Trans. on Industry Applications, vol. IA-
18, pp. 163 –171, Mar. 1982.

[22] H.-S. Song and K. Nam, “Dual current control scheme for pwm converter under
unbalanced input voltage conditions,” IEEE Trans. on Industrial Electronics ,vol. 46, pp. 953 –959, Oct. 1999.

[23] M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu, and J. Carrasco,
“Enhanced decoupled double synchronous reference frame current controller for
unbalanced grid-voltage conditions,” IEEE Trans. on Power Electronics, vol. 27,
pp. 3934 –3943, Sept. 2012.

[24] T. Wang, Z. Ye, G. Sinha, and X. Yuan, “Output filter design for a grid
-interconnected three-phase inverter,” in Power Electronics Specialist Conf., 2003. PESC ’03. 2003 IEEE 34th Annual, vol. 2, pp. 779 – 784 vol.2, Jun. 2003.

[25] C.-Y. Lee, “Effects of unbalanced voltage on the operation performance of a three phase induction motor,” IEEE Trans. on Energy Conversion, vol. 14, pp. 202 –208,
Jun. 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *