帳號:guest(3.141.12.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林浚彰
作者(外文):Lin, Jiun-Jang
論文名稱(中文):功率解耦電路應用於單相直流/交流轉換器之分析與比較
論文名稱(外文):Analysis and Comparison of Power Decoupling Circuits for Single-Phase DC/AC Converters
指導教授(中文):鄭博泰
指導教授(外文):Cheng, Po-Tai
口試委員(中文):黃智方
廖崇維
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061595
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:112
中文關鍵詞:功率解耦電路
外文關鍵詞:Power decoupling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:119
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在單向直流/交流轉換器中,直流側上二倍頻的脈動功率為主要的議題之一。傳統補償二倍頻功率的方法是在直流側並聯一個大電容補償此脈動功率,一般此電容為電解電容,而在太陽能與市電並聯的系統中對於壽命的要求通常需要20年以上,而電解電容之壽命非常短無法達到此項要求,因而提出功率解耦電路的方法。功率解耦電路可以有效的降低直流側濾波電容需求,避免使用電解電容,以壽命較長的薄膜電容代替。現在有非常多種的功率解耦電路已經被提出,例如降壓型、升壓型、全橋型等較典型的功率解耦電路,而這些功率解耦點路之共通點為會降低系統整體的損失,因此尋找一損失最低的功率解耦電路為主要之目標。
本篇論文主要針對降壓型、升壓型、以及全橋型三種不同架構的功率解耦電路做效率以及電容儲能的分析與比較,以提供一個高效率和低電容值的功率解耦電路。本論文中會先對這三種功率解耦電路的操作原理與控制方法做介紹,之後介紹三種功率解耦電路損失的計算方法,包含鐵損,銅損,導通損,切換損,二極體反向恢復損失,和驅動電路之損失,透過電腦的模擬方程式計算整個種功率解耦電路的損失計算,再經由經比較觀察各種損失在不同功率解耦電路之情形,最後透過模擬和實驗來驗證損失計算的準確性與比較三種功率解耦電路的效率,進而提供一個高效率和低電容值的功率解耦電路。
In single phase DC/AC converters, the pulsating power of twice fundamental frequency on the DC side is an important issue. The traditional method adds a large amount of electrolytic capacitor to absorb the pulsating power. In a photovoltaic grid-connected system, it requires 20+ years of life time. This requirement cannot be met by using electrolytic capacitors. Due to the short lifetime of electrolytic capacitors, the power decoupling circuit is proposed to absorb the pulsating power. The addition of power decoupling circuit will reduce the overall efficiency, and with different power decoupling structures the overall efficiency and capacitance will be different. How to choose a power decoupling circuit with lower capacitance and higher efficiency is an issue to be discussed.
In this paper three types of power decoupling circuits will be discussed and analyzed, namely, buck type, boost type, and H-bridge type. By analyzing and comparing the three types of power decoupling circuits, the circuit with lower capacitance and higher efficiency can be found. This paper will discuss the operation principles and control methods of these power decoupling circuits, followed by the introduction of loss equations and capacitor energy storage. The simulation results and experimental results are also provided to verify the analysis of power loss.
致謝 I
摘要 II
Abstract III
目錄 IV
第一章 緒論 2
1.1簡介 2
1.2研究方向 3
1.3論文架構 4
第二章 文獻回顧 5
2.1介紹 5
2.2 升壓型功率解耦電路之單相直流/交流轉換器 7
2.3 降壓型功率解耦電路之單相直流/交流轉換器 9
2.4 全橋型功率解耦電路之單相直流/交流轉換器 13
2.5 結論 16
第三章 功率解耦電路應用於單相直流/交流轉換器的損失估計與儲能分析 17
3.1介紹 17
3.2 市電並聯之全橋型直流/交流轉換器 21
3.3 升壓型功率解耦電路 31
3.4 降壓型功率解耦電路 43
3.5 全橋型功率解耦電路 53
3.6 不同功率解耦電路的儲能比較 63
3.7 不同功率解耦電路的損失比較 67
3.8 結論 69
第四章 模擬結果與比較 70
4.1 介紹 70
4.2 市電並聯之單相全橋直流/交流轉換器 71
4.3 升壓型功率解耦電路之單相直流/交流轉換器 72
4.4 降壓型功率解耦電路之單相直流/交流轉換器 74
4.5 全橋型功率解耦電路之單相直流/交流轉換器 76
4.6 結論 78
第五章 實驗與比較結果 79
5.1 介紹 79
5.2 市電並聯之單相全橋直流/交流轉換器 80
5.3 升壓型功率解耦電路之單相直流/交流轉換器 83
5.4 全橋型功率解耦電路之單相直流/交流轉換器 86
5.5損失之驗證與比較 89
5.6 部分解耦 92
5.7 操作於不同功率因數之實驗 100
5.8 結論 106
第六章 結論及未來工作 107
6.1結論 107
6.2未來工作 108
參考文獻 109
[1] J. C. Das, “Passive filters – potentialities and limitations,” Industry Application, IEEE Transactions on, vol. 40, no. 1, pp. 232–241, Mar./Apr.2004.
[2] T. Shimizu, T. Fujita, G.Kimura, and J. Hirose, "A unity power factor PWM rectifier with DC ripple compensation,”Industrial Electronics, IEEE Transactions on, vol. 44, no. 4, pp. 447–455, Aug.1997.
[3] T. Shimizu, K.Wada and N.Nakamura, ”A flyback-type single phase utility interactive inverter with low-frequency ripple current reduction on the DC input for an AC photovoltaic module system,” IEEE PESC, vol. 3, pp. 1483-1488, 2002.
[4] T. Hirao, T. Shimizu, M. Ishikawa and K. Yasui,“Discussion on modulation methods for flyback-type single-phase inverters with enhanced power decoupling for photovoltaic AC module systems,” IEEJ IPEC, pp.1419-1425,2005
[5] S. A. Khajehoddin, A. Bakhshai, P. Jain, and J. Drobnik, "A robust power decoupler and maximum power point tracker topology for a grid-connected photovoltaic system," in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, pp. 66-69, 2008.
[6] K. H. Chao, P. T. Cheng, and T. Shimizu, "New control methods for single phase PWM regenerative rectifier with power decoupling function,” Power Electronics and Drive Systems, 2009. PEDS 2009. International Conference on, pp. 1091–1096, 2-5 Nov.2009.

[7] K. H. Chao, and P. T. Cheng, "Power decoupling methods for single-phase three-poles AC/DC converters,” Energy Conversion Congress and Exposition, 2009. ECCE 2009. International Conference on, pp. 3742–3747, 20-24 Sept.2009.
[8] L. N. Arruda, S. M. Silva, and B. J. C. Filho, “Pll structures for utility connected systems,” Thirty-sixth IAS Annual Meeting, International Conference on, pp. 2655–2660, 2001.
[9] T. G. Habetler, “A space vector-based rectifier regulator for ac/dc/ac converters,” Power Electronics, IEEE Transactions on, vol. 8, no. 1, pp. 30–36, Jan.1993.
[10] S. Kouro, M. Perez, H. Robles, and J. Rodrigues, "Switching loss analysis of modulation methods used in cascaded H-bridge multilevel converters,” Power Electronics Specialists Conference, 2008. PESC 2008. International Conference on, pp. 4662–4668, 15-19 Jun.2008.
[11] A. M. Hava, R. J. Kerkman, T. A. Lipo, "Simple analytical and graphical methods for carrier-based PWM-VSI drives," Power Electronics, IEEE Transactions on, vol.14, no.1, pp.49–61, Jan. 1999.
[12] R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Boulder, Colorado: Kluwer Academic Publisher, 2001, pp. 96–97.
[13] R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 1nd ed. Boulder, Colorado: Kluwer Academic Publisher, 1999, pp. 471–474.
[14] T. Shimizu, and S. Iyasu, "A practical iron loss calculation for acfilter inductors used in pwminverters," Industrial Electronics, IEEE Transactions on, vol.56, no.7, pp.2600–2609, July 2009.

[15] T. Shimizu, K. Wada, and N. Nakamura, "Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dcinput for an acphotovoltaic module system," Power Electronics, IEEE Transactions on , vol.21, no.5, pp.1264–1272, Sept. 2006.
[16] J. B. Wang, R. Li, and J. Chen, "Efficiency comparison of the full bridge converters in considered magnetic saturation," 34th Annual Confernece, IECON 2008. International Conference on, pp.717–722, 10-13 Nov. 2008.
[17] A. Berasategi, C. Cabal, C. Alonso, and B. Estibals, "European efficiency improvement in photovoltaic applications by means of parallel connection of power converters," Power Electronics and Applications, 2009. EPE '09. 13th European Conference on, pp.1–10, Sept. 2009.
[18] C. T. Lee, Y. M. Chen, L. C. Chen, and P. T. cheng, Efficiency improvement of a DC/AC Converter with the Power Decoupling Capability,” Applied Power Electronics Conference and Exposition, 2012, APEC. Internation Conference on, pp.1462-1468, Feb.2012.
[19] P.T.Krein and R.S.Balog, “Cost-effective hundred-year life for single phase inverters and rectifiers in solar and LED lighting applications based on minimum capacitance requirements and a ripple power port, ”Appl. Power Electron. conf., APEC,pp. 620-625,2009.
[20] Philip T. Kreinn, Fellow, IEEE,Robert S. Balog, Senior Member, IEEE, and Mehran Mirjafari,Student Member, IEEE, “Minimum Energy and Capacitance Requirements for Single-Phase Inverters and Rectifiers Using a Ripple Port”, IEEE TRANSACTIONS ON POWER ELECTORNICS, VOL, 27,NO11, NOVEMBER 2012.
[21] Ruxi Wang,Student Member, IEEE, Fei(Fred) Wang, Fellow, IEEE, Dushan Boroyevich, Fellow, IEEE, Rolando Burgos, Member,IEEE, Rixin Lai, Member, IEEE, Puqi Ning, Student Member, IEEE, and Kaushik Rajashekara, Fellow,IEEE, “A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage”, IEEE TRANSATIONS ON POWER ELECTRONICS, VOL.26,NO 5, MAY 2011.
[22] Technical minimum requirments for the connection to and parallel operation with low-voltage distribution networks. VDE-AR-N 4105:2011-08
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *