|
[1] P. Harpe, et al., "A 10b/12b 40 kS/s SAR ADC With Data-Driven Noise Reduction Achieving up to 10.1b ENOB at 2.2 fJ/Conversion-Step," IEEE J. Solid-State Circuits, vol.48, no.12, pp. 3011-3018, Dec. 2013. [2] M. Ahmadi, et al., "A 3.3fJ/conversion-step 250kS/s 10b SAR ADC using optimized vote allocation," IEEE CICC , pp. 22-25 Sept. 2013. [3] P. Harpe, et al., "An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR," IEEE ISSCC Dig. Tech. Papers, pp. 194-195, Feb. 2014. [4] V. Giannini, et al., "An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS," IEEE ISSCC Dig. Tech. Papers, pp. 238-239,610, Feb. 2008. [5] P. Harpe, et al., "A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/ conversion-step," IEEE ISSCC Dig. Tech. Papers, pp. 472-474, Feb. 2012. [6] H.-Y. Tai, et al., "11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS," IEEE ISSCC Dig. Tech. Papers, pp. 196-197, Feb. 2014. [7] C.-Y. Liou, C.-C. Hsieh, "A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-average switching DAC in 90nm CMOS," IEEE ISSCC Dig. Tech. Papers, pp. 280-282, Feb. 2013. [8] H.-Y. Huang, et al., "A 9.2b 47fJ/conversion-step asynchronous SAR ADC with input range prediction DAC switching," IEEE ISCAS, pp. 2353-2356, May 2012. [9] Chun-Cheng Liu; Soon-Jyh Chang; Guan-Ying Huang; Ying-Zu Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," IEEE J. Solid-State Circuits, vol.45, no.4, pp. 731-740, April 2010. [10] Y. Zhu, et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE J. Solid-State Circuits, vol.45, no.6, pp. 1111-1121, June 2010. [11] Z. Zhu, et al., "VCM-based monotonic capacitor switching scheme for SAR ADC," Electronics Letters , vol.49, no.5, pp. 327-329, Feb. 2013. [12] G.-Y. Huang, et al., "A 1-μW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," IEEE J. Solid-State Circuits, vol.47, no.11, pp. 2783-2795, Nov. 2012. [13] F.M. Yaul, et al., "11.3 A 10b 0.6nW SAR ADC with data-dependent energy savings using LSB-first successive approximation," IEEE ISSCC Dig. Tech. Papers, pp.198-199, Feb. 2014. [14] B. Murmann, "ADC Performance Survey 1997-2014," [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html. [15] H.-J. Jeon, et al., "Offset voltage analysis of dynamic latched comparator," IEEE MWSCAS, pp. 1-4, Aug. 2011. [16] H. Jun, et al., "Analyses of Static and Dynamic Random Offset Voltages in Dynamic Comparators," IEEE TCASI, vol.56, no.5, pp. 911-919, May 2009. [17] A. Nikoozadeh, et al., "An Analysis of Latch Comparator Offset Due to Load Capacitor Mismatch," IEEE TCASII, vol.53, no.12, pp. 1398-1402, Dec. 2006. [18] P.M. Figueiredo, et al., "Kickback noise reduction techniques for CMOS latched comparators," IEEE TCASII, vol.53, no.7, pp. 541-545, July 2006. [19] P. Nuzzo, et al., "Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures," IEEE TCASI, vol.55, no.6, pp.1441-1454, July 2008. [20] M. Alioto, et al., "Power–Delay–Area–Noise Margin Tradeoffs in Positive-Feedback MOS Current-Mode Logic," IEEE TCASI, vol.54, no.9, pp. 1916-1928, Sept. 2007. [21] H. Pekau, et al., "A CMOS integrated linear voltage-to-pulse-delay-time converter for time based analog-to-digital converters," IEEE ISCAS, pp. 2373-2376, May 2006. [22] S.-K. Lee et al., "A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface," IEEE J. Solid-State Circuits, vol.46, no.3, pp. 651-659, March 2011. [23] G.W. Roberts, et al., "A Brief Introduction to Time-to-Digital and Digital-to-Time Converters," IEEE TCASII, vol.57, no.3, pp. 153-157, March 2010. [24] J.-P. Jansson, et al., "A CMOS time-to-digital converter with better than 10 ps single-shot precision," IEEE J. Solid-State Circuits, vol.41, no.6, pp. 1286-1296, June 2006. [25] Y.-Z. Lin et al., "A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS," IEEE TCASI, vol.60, no.3, pp. 570-581, March 2013. [26] C.C. Lee, et al., "A SAR-Assisted Two-Stage Pipeline ADC," IEEE J. Solid-State Circuits, vol.46, no.4, pp. 859-869, April 2011. [27] F. van der Goes, et al., "A 1.5mW 68dB SNDR 80MS/s 2× interleaved SAR-assisted pipelined ADC in 28nm CMOS," IEEE ISSCC Dig. Tech. Papers, vol., no., pp. 200-201, Feb. 2014. [28] J. Fredenburg, et al., "A 90MS/s 11MHz bandwidth 62dB SNDR noise-shaping SAR ADC," IEEE ISSCC Dig. Tech. Papers, pp. 468-470, Feb. 2012 [29] A. Shikata, et al.,"A 0.5 V 1.1 MS/sec 6.3 fJ/Conversion-Step SAR-ADC With Tri-Level Comparator in 40 nm CMOS," IEEE J. Solid-State Circuits, vol.47, no.4, pp. 1022-1030, April 2012. [30] J. Guerber, et al., "A 10-b Ternary SAR ADC With Quantization Time Information Utilization," IEEE J. Solid-State Circuits, vol.47, no.11, pp. 2604-2613, Nov. 2012. [31] Y. Zhu, et al., "A voltage feedback charge compensation technique for split DAC architecture in SAR ADCs," IEEE ISCAS, pp. 4061-4064, May 2010. [32] S. Lei, et al., "Analysis on Capacitor Mismatch and Parasitic Capacitors Effect of Improved Segmented-Capacitor Array in SAR ADC," IEEE IITA, vol.2, pp. 280-283, Nov. 2009. [33] Z. Dai, et al., "A 3-nW 9.1-ENOB SAR ADC at 0.7 V and 1 kS/s," IEEE ESSCIRC, pp. 369-372, Sept. 2012. [34] R. Sekimoto, et al., "A 0.5-V 5.2-fJ/Conversion-Step Full Asynchronous SAR ADC With Leakage Power Reduction Down to 650 pW by Boosted Self-Power Gating in 40-nm CMOS," IEEE J. Solid-State Circuits, vol.48, no.11, pp. 2628-2636, Nov. 2013 [35] J.-H. Tsai, et al., "A 1-V, 8b, 40MS/s, 113μW charge-recycling SAR ADC with a 14μW asynchronous controller," IEEE Symp. VLSI Circuits Dig. Tech. Papers, pp. 264-265, June 2011. [36] B.P. Ginsburg, et al., "Dual Time-Interleaved Successive Approximation Register ADCs for an Ultra-Wideband Receiver," IEEE J. Solid-State Circuits, vol.42, no.2, pp. 247-257, Feb. 2007. [37] A. Agnes, et al., "A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator," IEEE ISSCC Dig. Tech. Papers, pp. 246-247, Feb. 2008. [38] J.-Y. Um et al., "A Digital-Domain Calibration of Split-Capacitor DAC for a Differential SAR ADC without Additional Analog Circuits," IEEE TCASI, vol.60, no.11, pp. 2845-2856, Nov. 2013. [39] M. Wiessflecker, et al., "An 11 bit SAR ADC combining a split capacitor array with a resistive ladder and a configurable noise time domain comparator," IEEE MWSCAS, pp.101-104, Aug. 2012. [40] Y. Jianjun, et al., "A 12-Bit Vernier Ring Time-to-Digital Converter in 0.13 CMOS Technology," IEEE J. Solid-State Circuits, vol.45, no.4, pp. 830-842, April 2010. [41] B. Mesgarzadeh, et al., "A Low-Power Digital DLL-Based Clock Generator in Open-Loop Mode," IEEE J. Solid-State Circuits, vol.44, no.7, pp.1907-1913, July 2009. [42] R.-J. Yang, et al., "A 40–550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm," IEEE J. Solid-State Circuits, vol.42, no.2, pp.361-373, Feb. 2007. [43] A. Abidi, "Phase Noise and Jitter in CMOS Ring Oscillators," IEEE J. Solid-State Circuits, vol.41, no.8, pp. 1803-1816, Aug. 2006. [44] A. Homayoun, et al., "Relation between Delay Line Phase Noise and Ring Oscillator Phase Noise," IEEE J. Solid-State Circuits, vol.49, no.2, pp.384-391, Feb. 2014. [45] C.-H. Chan, et al., "A voltage-controlled capacitance offset calibration technique for high resolution dynamic comparator," IEEE ISOCC, pp.392-395, Nov. 2009. [46] M. Miyahara, et al., "A low-noise self-calibrating dynamic comparator for high-speed ADCs," IEEE ASSCC, pp.269-272, Nov. 2008. [47] J. Lu, et al., "A Low-Power High-Precision Comparator With Time-Domain Bulk-Tuned Offset Cancellation,"IEEE TCASI, vol.60, no.5, pp.1158-1167, May 2013. [48] D.-G. Chen, et al., "A low-power dynamic comparator with digital calibration for reduced offset mismatch," IEEE ISCAS, pp.1283-1286, May 2012. [49] P.-L. Chen, et al., "A portable digitally controlled oscillator using novel varactors," IEEE TCASII, vol.52, no.5, pp. 233-237, May 2005. [50] M. Maymandi-Nejad, et al., "A monotonic digitally controlled delay element," IEEE J. Solid-State Circuits, vol.40, no.11, pp. 2212-2219, Nov. 2005. [51] P. Raha, et al., "A robust digital delay line architecture in a 0.13 μm CMOS technology node for reduced design and process sensitivities," IEEE Symp. QED, pp. 148-153, 2002. |