帳號:guest(3.148.105.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊廷
作者(外文):Chen, Jyun Ting
論文名稱(中文):以序列切換式非對稱刺激波形實現殘餘電荷誤差比小於0.1%之電流式神經刺激器
論文名稱(外文):Using sequential switching asymmetric stimulating waveforms to implement a current-mode neuron stimulator with residual charge mismatch percentage less than 0.1%
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea Tiong
口試委員(中文):陳新
謝志成
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061575
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:55
中文關鍵詞:神經刺激電路功能性電刺激非對稱式波形低殘餘電荷
外文關鍵詞:stimulator circuitFunctional electrical stimulationasymmetric waveformlow residual charge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:558
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
近幾年來生醫電子領域已逐漸被人們重視並投入發展。已有許多研究指出功能性電刺激可用來治療許多神經性疾病、恢復部分器官功能、修補因神經受損造成的殘疾…等可為人們帶來更健康、更方便的生活。而這種功能性電刺激即是由刺激電路所產生的。
一般而言,在許多的植入式裝置裡,刺激電路由於是最靠近神經的IC電路,所以在設計上對於安全的需求是最為重視的。而在安全上通常是以「經過刺激後,殘留在電極/神經上的殘餘電荷」這個指標為基本要求。我們希望此值能越低越好,以避免刺激器後端的電極陣列在長期運作後產生像是電解的質變,進而傷害到神經;如同我們對於神經的基本生理認知,神經需要足夠的閥值電荷才能被刺激。而已有研究指出刺激器若能輸出「非對稱式刺激波形」這種特殊的功能性電刺激的話,有助於壓低神經刺激時所需要的閥值電荷,並可使刺激器的能量利用率及運作時間皆有進步;然而在輸出非對稱式波形下,又要能夠達到夠低的殘餘電荷,在設計電路角度上是非常困難的。
本論文即是觀察到了上面的設計困境,並以過去文獻的方法為基礎改進,成功地達到了能在輸出非對稱式波形的情況下同時兼顧低殘餘最後電荷。在模擬上達到了能在輸出400μA的非對稱式刺激波形下,其殘餘電荷佔總輸出電荷誤差比降低至0.1%以下。
Bio-medical field has drawn more and more attention in recent years. Functional electrical stimulation (FES) has been researched and applied to treat neuron disease, repair the physiological function of patients suffering from neuron damage. The stimulator is very close to neuron in all implantable devices, so safety is the critical point. Usually, residual charge on electrode/neuron interface after once stimulation is estimated as safety standard. We wish the residual charge can be reduced as low as possible. Because lower residual charge means the electrode electrolysis probability is smaller.
Besides, some researches have proven that the stimulator with asymmetric stimulation output waveform can reduce neuron stimulation threshold charge effectively. However, stimulator with asymmetric output waveform is hard to reduce residual charge because of its difficult calibration through circuit.
According to above design hard point, we use an improved current source control signal called sequential switching signal (S.S signal) to achieve lower residual charge when transferring asymmetric waveform. The stimulator has been fabricated using TSMC 0.18μm technology. Simulation result shows that stimulation current is up to 400μA and its residual charge mismatch percentage is less than 0.1%.
摘要
Abstract
致謝
目錄
圖目錄
表格目錄
第一章 序論
1.1 刺激器研究發展現況
1.2 神經及刺激器運作原理
1.3 神經刺激器系統架構及其設計要點
1.4 研究動機
1.5 本論文各章節簡介
第二章 文獻回顧
2.1 神經刺激器刺激方式及其相關架構
2.2 常見電荷平衡技巧文獻回顧
2.3 非對稱式波形刺激下的電荷平衡文獻回顧
第三章 電路實現技巧與電路架構
3.1 電路系統架構圖
3.2 電流鏡控制訊號改良
A. 一般電流鏡放大誤差
B. Williams式電流鏡控制訊號
C. 依序式分支電流鏡控制訊號
3.3 各子電路架構
A. 電流式數位類比轉換器DAC
B. 分支型電流鏡multi-branch current mirror
C. 運算放大器OPAMP
D. 開關陣列Switch array
第四章 模擬結果
4.1 晶片佈局圖
4.2 輸出波形圖
4.3 蒙地卡羅模擬:Williams式 V.S. 序列切換式
4.4 序列切換式訊號:Pre-sim V.S. Post-sim
4.5 規格表及文獻比較
4.6 模擬結果討論
第五章 結論
5.1 未來工作
參考文獻
[1] P. Berruecos, "Cochlear Implants: An International Perspective – Latin American Countries and Spain: Implantes Cocleares: Una Perspectiva Internacional - América Latina y Espana," Audiology, vol. 39, pp. 221-225, 2000/01/01 2000.
[2] M. D. Eisen, "Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing," Otol Neurotol, vol. 24, pp. 500-6, May 2003.
[3] K. Vermeire, J. P. L. Brokx, P. H. Van de Heyning, E. Cochet, and H. Carpentier, "Bilateral cochlear implantation in children," International Journal of Pediatric Otorhinolaryngology, vol. 67, pp. 67-70.
[4] E. Offeciers, C. Morera, J. Muller, A. Huarte, J. Shallop, and L. Cavalle, "International consensus on bilateral cochlear implants and bimodal stimulation," Acta Otolaryngol, vol. 125, pp. 918-9, Sep 2005.
[5] J. Reefhuis, M. A. Honein, C. G. Whitney, S. Chamany, E. A. Mann, K. R. Biernath, et al., "Risk of Bacterial Meningitis in Children with Cochlear Implants," New England Journal of Medicine, vol. 349, pp. 435-445, 2003.
[6] S. Furman, G. Szarka, and D. Layvand, "Reconstruction of Hyman's second pacemaker," Pacing Clin Electrophysiol, vol. 28, pp. 446-53, May 2005.
[7] J. G. Cleland, J. C. Daubert, E. Erdmann, N. Freemantle, D. Gras, L. Kappenberger, et al., "The effect of cardiac resynchronization on morbidity and mortality in heart failure," N Engl J Med, vol. 352, pp. 1539-49, Apr 14 2005.
[8] A. D. Bernstein, J. C. Daubert, R. D. Fletcher, D. L. Hayes, B. Luderitz, D. W. Reynolds, et al., "The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group," Pacing Clin Electrophysiol, vol. 25, pp. 260-4, Feb 2002.
[9] B. L. Wilkoff, J. R. Cook, A. E. Epstein, H. L. Greene, A. P. Hallstrom, H. Hsia, et al., "Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial," JAMA, vol. 288, pp. 3115-23, Dec 25 2002.
[10] J. D. Loudin, D. M. Simanovskii, K. Vijayraghavan, C. K. Sramek, A. F. Butterwick, P. Huie, et al., "Optoelectronic retinal prosthesis: system design and performance," J Neural Eng, vol. 4, pp. S72-84, Mar 2007.
[11] J. D. Weiland and M. S. Humayun, "Visual prosthesis," Proc. IEEE, vol. 96, pp. 1076-1084, Jul 2008.
[12] M. S. Humayun, J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, et al., "Visual perception in a blind subject with a chronic microelectronic retinal prosthesis," Vision Research, vol. 43, pp. 2573-2581, Nov 2003.
[13] F. Gekeler, P. Szurman, S. Grisanti, U. Weiler, R. Claus, T. O. Greiner, et al., "Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs," Graefes Arch Clin Exp Ophthalmol, vol. 245, pp. 230-41, Feb 2007.
[14] J. D. Weiland, W. Liu, and M. S. Humayun, "Retinal prosthesis," Annu. Rev. Biomed. Eng., vol. 7, pp. 361-401, 2005.
[15] E. Zrenner, "Will retinal implants restore vision?," Science, vol. 295, pp. 1022-1025, Feb. 8 2002.
[16] V. Valente, A. Demosthenous, and R. Bayford, "A Tripolar Current-Steering Stimulator ASIC for Field Shaping in Deep Brain Stimulation," IEEE Trans. Biomed. Circuits Syst., vol. 6, pp. 197-207, 2012.
[17] J. C. Oakley and J. P. Prager, "Spinal cord stimulation: mechanisms of action," Spine (Phila Pa 1976), vol. 27, pp. 2574-83, Nov 15 2002.
[18] M. S. Matharu, T. Bartsch, N. Ward, R. S. Frackowiak, R. Weiner, and P. J. Goadsby, "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study," Brain, vol. 127, pp. 220-30, Jan 2004.
[19] R. B. North, D. H. Kidd, F. Farrokhi, and S. A. Piantadosi, "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial," Neurosurgery, vol. 56, pp. 98-106; discussion 106-7, 2005.
[20] R. A. Schmidt, U. Jonas, K. A. Oleson, R. A. Janknegt, M. M. Hassouna, S. W. Siegel, et al., "Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral Nerve Stimulation Study Group," J Urol, vol. 162, pp. 352-7, Aug 1999.
[21] G. S. Brindley, C. E. Polkey, D. N. Rushton, and L. Cardozo, "Sacral anterior root stimulators for bladder control in paraplegia: the first 50 cases," Journal of Neurology, Neurosurgery, and Psychiatry, vol. 49, pp. 1104-1114, 1986.
[22] C. Jyun-Ting, T. Kea-Tiong, and W. Guoxing, "Challenges in circuits for visual prostheses," in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013, pp. 634-637.
[23] R. K. Shepherd, N. Linahan, J. Xu, G. M. Clark, and S. Araki, "Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli," Acta Otolaryngol, vol. 119, pp. 674-84, 1999.
[24] J. J. Sit and R. Sarpeshkar, "A Low-Power Blocking-Capacitor-Free Charge-Balanced Electrode-Stimulator Chip With Less Than 6 nA DC Error for 1-mA Full-Scale Stimulation," IEEE Trans. Biomed. Circuits Syst., vol. 1, pp. 172-183, Sep 2007.
[25] D. R. Merrill, M. Bikson, and J. G. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols," J. Neurosci. Methods., vol. 141, pp. 171-198, Feb. 15 2005.
[26] O. Macherey, A. Wieringen, R. Carlyon, J. Deeks, and J. Wouters, "Asymmetric Pulses in Cochlear Implants: Effects of Pulse Shape, Polarity, and Rate," J. Assoc. Res. Otolaryngol, vol. 7, pp. 253-266, 09/01 2006.
[27] A. Rothermel, L. Liu, N. P. Aryan, M. Fischer, J. Wuenschmann, S. Kibbel, et al., "A CMOS Chip With Active Pixel Array and Specific Test Features for Subretinal Implantation," IEEE J. Solid-State Circuits, vol. 44, pp. 290-300, Jan 2009.
[28] H. G. Graf, C. Harendt, T. Engelhardt, C. Scherjon, K. Warkentin, H. Richter, et al., "High Dynamic Range CMOS Imager Technologies for Biomedical Applications," IEEE J. Solid-State Circuits, vol. 44, pp. 281-289, 2009.
[29] K. Chen, Y.-K. Lo, and W. Liu, "A 37.6mm2 1024-channel high-compliance-voltage SoC for epiretinal prostheses," in Proc. IEEE ISSCC Dig. Tech. Papers, 2013, pp. 294-295.
[30] L. Kyomuk, S. Jindeok, S. Changho, and K. Hyoungho, "A 16-channel neural stimulator with DAC sharing scheme for visual prostheses," in Proc. IEEE ISCAS, 2013, pp. 1873-1876.
[31] M. Ortmanns, A. Rocke, M. Gehrke, and H. J. Tiedtke, "A 232-channel epiretinal stimulator ASIC," IEEE J. Solid-State Circuits, vol. 42, pp. 2946-2959, Dec 2007.
[32] I. Williams and T. G. Constandinou, "An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis," IEEE Trans. Biomed. Circuits Syst., vol. 7, pp. 129-139, 2013.
[33] S. K. Kelly and J. L. Wyatt, "A Power-Efficient Neural Tissue Stimulator With Energy Recovery," IEEE Trans. Biomed. Circuits Syst., vol. 5, pp. 20-29, Feb 2011.
[34] S. Hossain, L. Weaver, A. Walker, D. Rivas, A. Fawzi, J. Lindberg, et al., "A very low power CMOS mixed-signal IC for implantable pacemaker applications," in Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International, 2004, pp. 318-530 Vol.1.
[35] F. Shahrokhi, K. Abdelhalim, and R. Genov, "128-channel fully differential digital neural recording and stimulation interface," in Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, 2009, pp. 1249-1252.
[36] M. Ghovanloo, "Switched-capacitor based implantable low-power wireless microstimulating systems," in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, 2006, p. 4 pp.
[37] X. Liu, A. Demosthenous, and N. Donaldson, "An Integrated Implantable Stimulator That is Fail-Safe Without Off-Chip Blocking-Capacitors," IEEE Trans. Biomed. Circuits Syst., vol. 2, pp. 231-244, Sep 2008.
[38] X. Liu, A. Demosthenous, and N. Donaldson, "An Integrated Stimulator With DC-Isolation and Fine Current Control for Implanted Nerve Tripoles," IEEE J. Solid-State Circuits, vol. 46, pp. 1701-1714, Jul 2011.
[39] T. Tokuda, K. Hiyama, S. Sawamura, K. Sasagawa, Y. Terasawa, K. Nishida, et al., "CMOS-Based Multichip Networked Flexible Retinal Stimulator Designed for Image-Based Retinal Prosthesis," IEEE Trans. Electron Devices, vol. 56, pp. 2577-2585, Nov 2009.
[40] T. Tokuda, Y. Takeuchi, Y. Sagawa, T. Noda, K. Sasagawa, K. Nishida, et al., "Development and in vivo Demonstration of CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite Stimulation Capability," IEEE Trans. Biomed. Circuits Syst., vol. 4, pp. 445-453, Dec 2010.
[41] B. K. Thurgood, D. J. Warren, N. M. Ledbetter, G. A. Clark, and R. R. Harrison, "A Wireless Integrated Circuit for 100-Channel Charge-Balanced Neural Stimulation," IEEE Trans. Biomed. Circuits Syst., vol. 3, pp. 405-414, Dec 2009.
[42] J. Dai, A. Demosthenous, D. Cirmirakis, T. A. Perkins, and N. Donaldson, "Design of a stimulator ASIC for an implantable vestibular neural prosthesis," in Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE, 2010, pp. 206-209.
[43] L. Wentai, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, et al., "A neuro-stimulus chip with telemetry unit for retinal prosthetic device," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 1487-1497, 2000.
[44] M. Sivaprakasam, W. T. Liu, G. X. Wang, M. C. Zhou, J. D. Weiland, and M. S. Humayun, "Architecture tradeoffs in high-density microstimulators for retinal prosthesis," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, pp. 2629-2641, 2005.
[45] W. Ngamkham, M. N. Van Dongen, and W. A. Serdijn, "Biphasic stimulator circuit for a wide range of electrode-tissue impedance dedicated to cochlear implants," in Proc. IEEE ISCAS, 2012, pp. 1083-1086.
[46] H. Chun, Y. Yang, and T. Lehmann, "Safety Ensuring Retinal Prosthesis With Precise Charge Balance and Low Power Consumption," IEEE Trans. Biomed. Circuits Syst., vol. 8, pp. 108-118, 2014.
[47] E. K. F. Lee and A. Lam, "A Matching Technique for Biphasic Stimulation Pulse," in Proc. IEEE ISCAS, 2007, pp. 817-820.
[48] S. Guo and H. Lee, "Biphasic-current-pulse self-calibration techniques for monopolar current stimulation," in Proc. IEEE BioCAS, 2009, pp. 61-64.
[49] E. Noorsal, K. Sooksood, H. C. Xu, R. Hornig, J. Becker, and M. Ortmanns, "A Neural Stimulator Frontend With High-Voltage Compliance and Programmable Pulse Shape for Epiretinal Implants," IEEE J. Solid-State Circuits, vol. 47, pp. 244-256, Jan 2012.
[50] H. Chun, O. Kavehei, N. Tran, and S. Skafidas, "A flexible biphasic pulse generating and accurate charge balancing stimulator with a 1μW neural recording amplifier," in Proc. IEEE ISCAS, 2013, pp. 1885-1888.
[51] C. C. Chen and K. T. Tang, "A 12V-500μA neuron stimulator with current calibration mechanism in 0.18μm standard CMOS process," in Proc. IEEE BioCAS, 2011, pp. 57-60.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *