|
[1] P. Berruecos, "Cochlear Implants: An International Perspective – Latin American Countries and Spain: Implantes Cocleares: Una Perspectiva Internacional - América Latina y Espana," Audiology, vol. 39, pp. 221-225, 2000/01/01 2000. [2] M. D. Eisen, "Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing," Otol Neurotol, vol. 24, pp. 500-6, May 2003. [3] K. Vermeire, J. P. L. Brokx, P. H. Van de Heyning, E. Cochet, and H. Carpentier, "Bilateral cochlear implantation in children," International Journal of Pediatric Otorhinolaryngology, vol. 67, pp. 67-70. [4] E. Offeciers, C. Morera, J. Muller, A. Huarte, J. Shallop, and L. Cavalle, "International consensus on bilateral cochlear implants and bimodal stimulation," Acta Otolaryngol, vol. 125, pp. 918-9, Sep 2005. [5] J. Reefhuis, M. A. Honein, C. G. Whitney, S. Chamany, E. A. Mann, K. R. Biernath, et al., "Risk of Bacterial Meningitis in Children with Cochlear Implants," New England Journal of Medicine, vol. 349, pp. 435-445, 2003. [6] S. Furman, G. Szarka, and D. Layvand, "Reconstruction of Hyman's second pacemaker," Pacing Clin Electrophysiol, vol. 28, pp. 446-53, May 2005. [7] J. G. Cleland, J. C. Daubert, E. Erdmann, N. Freemantle, D. Gras, L. Kappenberger, et al., "The effect of cardiac resynchronization on morbidity and mortality in heart failure," N Engl J Med, vol. 352, pp. 1539-49, Apr 14 2005. [8] A. D. Bernstein, J. C. Daubert, R. D. Fletcher, D. L. Hayes, B. Luderitz, D. W. Reynolds, et al., "The revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multisite pacing. North American Society of Pacing and Electrophysiology/British Pacing and Electrophysiology Group," Pacing Clin Electrophysiol, vol. 25, pp. 260-4, Feb 2002. [9] B. L. Wilkoff, J. R. Cook, A. E. Epstein, H. L. Greene, A. P. Hallstrom, H. Hsia, et al., "Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial," JAMA, vol. 288, pp. 3115-23, Dec 25 2002. [10] J. D. Loudin, D. M. Simanovskii, K. Vijayraghavan, C. K. Sramek, A. F. Butterwick, P. Huie, et al., "Optoelectronic retinal prosthesis: system design and performance," J Neural Eng, vol. 4, pp. S72-84, Mar 2007. [11] J. D. Weiland and M. S. Humayun, "Visual prosthesis," Proc. IEEE, vol. 96, pp. 1076-1084, Jul 2008. [12] M. S. Humayun, J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, et al., "Visual perception in a blind subject with a chronic microelectronic retinal prosthesis," Vision Research, vol. 43, pp. 2573-2581, Nov 2003. [13] F. Gekeler, P. Szurman, S. Grisanti, U. Weiler, R. Claus, T. O. Greiner, et al., "Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs," Graefes Arch Clin Exp Ophthalmol, vol. 245, pp. 230-41, Feb 2007. [14] J. D. Weiland, W. Liu, and M. S. Humayun, "Retinal prosthesis," Annu. Rev. Biomed. Eng., vol. 7, pp. 361-401, 2005. [15] E. Zrenner, "Will retinal implants restore vision?," Science, vol. 295, pp. 1022-1025, Feb. 8 2002. [16] V. Valente, A. Demosthenous, and R. Bayford, "A Tripolar Current-Steering Stimulator ASIC for Field Shaping in Deep Brain Stimulation," IEEE Trans. Biomed. Circuits Syst., vol. 6, pp. 197-207, 2012. [17] J. C. Oakley and J. P. Prager, "Spinal cord stimulation: mechanisms of action," Spine (Phila Pa 1976), vol. 27, pp. 2574-83, Nov 15 2002. [18] M. S. Matharu, T. Bartsch, N. Ward, R. S. Frackowiak, R. Weiner, and P. J. Goadsby, "Central neuromodulation in chronic migraine patients with suboccipital stimulators: a PET study," Brain, vol. 127, pp. 220-30, Jan 2004. [19] R. B. North, D. H. Kidd, F. Farrokhi, and S. A. Piantadosi, "Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial," Neurosurgery, vol. 56, pp. 98-106; discussion 106-7, 2005. [20] R. A. Schmidt, U. Jonas, K. A. Oleson, R. A. Janknegt, M. M. Hassouna, S. W. Siegel, et al., "Sacral nerve stimulation for treatment of refractory urinary urge incontinence. Sacral Nerve Stimulation Study Group," J Urol, vol. 162, pp. 352-7, Aug 1999. [21] G. S. Brindley, C. E. Polkey, D. N. Rushton, and L. Cardozo, "Sacral anterior root stimulators for bladder control in paraplegia: the first 50 cases," Journal of Neurology, Neurosurgery, and Psychiatry, vol. 49, pp. 1104-1114, 1986. [22] C. Jyun-Ting, T. Kea-Tiong, and W. Guoxing, "Challenges in circuits for visual prostheses," in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013, pp. 634-637. [23] R. K. Shepherd, N. Linahan, J. Xu, G. M. Clark, and S. Araki, "Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli," Acta Otolaryngol, vol. 119, pp. 674-84, 1999. [24] J. J. Sit and R. Sarpeshkar, "A Low-Power Blocking-Capacitor-Free Charge-Balanced Electrode-Stimulator Chip With Less Than 6 nA DC Error for 1-mA Full-Scale Stimulation," IEEE Trans. Biomed. Circuits Syst., vol. 1, pp. 172-183, Sep 2007. [25] D. R. Merrill, M. Bikson, and J. G. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols," J. Neurosci. Methods., vol. 141, pp. 171-198, Feb. 15 2005. [26] O. Macherey, A. Wieringen, R. Carlyon, J. Deeks, and J. Wouters, "Asymmetric Pulses in Cochlear Implants: Effects of Pulse Shape, Polarity, and Rate," J. Assoc. Res. Otolaryngol, vol. 7, pp. 253-266, 09/01 2006. [27] A. Rothermel, L. Liu, N. P. Aryan, M. Fischer, J. Wuenschmann, S. Kibbel, et al., "A CMOS Chip With Active Pixel Array and Specific Test Features for Subretinal Implantation," IEEE J. Solid-State Circuits, vol. 44, pp. 290-300, Jan 2009. [28] H. G. Graf, C. Harendt, T. Engelhardt, C. Scherjon, K. Warkentin, H. Richter, et al., "High Dynamic Range CMOS Imager Technologies for Biomedical Applications," IEEE J. Solid-State Circuits, vol. 44, pp. 281-289, 2009. [29] K. Chen, Y.-K. Lo, and W. Liu, "A 37.6mm2 1024-channel high-compliance-voltage SoC for epiretinal prostheses," in Proc. IEEE ISSCC Dig. Tech. Papers, 2013, pp. 294-295. [30] L. Kyomuk, S. Jindeok, S. Changho, and K. Hyoungho, "A 16-channel neural stimulator with DAC sharing scheme for visual prostheses," in Proc. IEEE ISCAS, 2013, pp. 1873-1876. [31] M. Ortmanns, A. Rocke, M. Gehrke, and H. J. Tiedtke, "A 232-channel epiretinal stimulator ASIC," IEEE J. Solid-State Circuits, vol. 42, pp. 2946-2959, Dec 2007. [32] I. Williams and T. G. Constandinou, "An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis," IEEE Trans. Biomed. Circuits Syst., vol. 7, pp. 129-139, 2013. [33] S. K. Kelly and J. L. Wyatt, "A Power-Efficient Neural Tissue Stimulator With Energy Recovery," IEEE Trans. Biomed. Circuits Syst., vol. 5, pp. 20-29, Feb 2011. [34] S. Hossain, L. Weaver, A. Walker, D. Rivas, A. Fawzi, J. Lindberg, et al., "A very low power CMOS mixed-signal IC for implantable pacemaker applications," in Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International, 2004, pp. 318-530 Vol.1. [35] F. Shahrokhi, K. Abdelhalim, and R. Genov, "128-channel fully differential digital neural recording and stimulation interface," in Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on, 2009, pp. 1249-1252. [36] M. Ghovanloo, "Switched-capacitor based implantable low-power wireless microstimulating systems," in Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on, 2006, p. 4 pp. [37] X. Liu, A. Demosthenous, and N. Donaldson, "An Integrated Implantable Stimulator That is Fail-Safe Without Off-Chip Blocking-Capacitors," IEEE Trans. Biomed. Circuits Syst., vol. 2, pp. 231-244, Sep 2008. [38] X. Liu, A. Demosthenous, and N. Donaldson, "An Integrated Stimulator With DC-Isolation and Fine Current Control for Implanted Nerve Tripoles," IEEE J. Solid-State Circuits, vol. 46, pp. 1701-1714, Jul 2011. [39] T. Tokuda, K. Hiyama, S. Sawamura, K. Sasagawa, Y. Terasawa, K. Nishida, et al., "CMOS-Based Multichip Networked Flexible Retinal Stimulator Designed for Image-Based Retinal Prosthesis," IEEE Trans. Electron Devices, vol. 56, pp. 2577-2585, Nov 2009. [40] T. Tokuda, Y. Takeuchi, Y. Sagawa, T. Noda, K. Sasagawa, K. Nishida, et al., "Development and in vivo Demonstration of CMOS-Based Multichip Retinal Stimulator With Simultaneous Multisite Stimulation Capability," IEEE Trans. Biomed. Circuits Syst., vol. 4, pp. 445-453, Dec 2010. [41] B. K. Thurgood, D. J. Warren, N. M. Ledbetter, G. A. Clark, and R. R. Harrison, "A Wireless Integrated Circuit for 100-Channel Charge-Balanced Neural Stimulation," IEEE Trans. Biomed. Circuits Syst., vol. 3, pp. 405-414, Dec 2009. [42] J. Dai, A. Demosthenous, D. Cirmirakis, T. A. Perkins, and N. Donaldson, "Design of a stimulator ASIC for an implantable vestibular neural prosthesis," in Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE, 2010, pp. 206-209. [43] L. Wentai, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, et al., "A neuro-stimulus chip with telemetry unit for retinal prosthetic device," Solid-State Circuits, IEEE Journal of, vol. 35, pp. 1487-1497, 2000. [44] M. Sivaprakasam, W. T. Liu, G. X. Wang, M. C. Zhou, J. D. Weiland, and M. S. Humayun, "Architecture tradeoffs in high-density microstimulators for retinal prosthesis," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, pp. 2629-2641, 2005. [45] W. Ngamkham, M. N. Van Dongen, and W. A. Serdijn, "Biphasic stimulator circuit for a wide range of electrode-tissue impedance dedicated to cochlear implants," in Proc. IEEE ISCAS, 2012, pp. 1083-1086. [46] H. Chun, Y. Yang, and T. Lehmann, "Safety Ensuring Retinal Prosthesis With Precise Charge Balance and Low Power Consumption," IEEE Trans. Biomed. Circuits Syst., vol. 8, pp. 108-118, 2014. [47] E. K. F. Lee and A. Lam, "A Matching Technique for Biphasic Stimulation Pulse," in Proc. IEEE ISCAS, 2007, pp. 817-820. [48] S. Guo and H. Lee, "Biphasic-current-pulse self-calibration techniques for monopolar current stimulation," in Proc. IEEE BioCAS, 2009, pp. 61-64. [49] E. Noorsal, K. Sooksood, H. C. Xu, R. Hornig, J. Becker, and M. Ortmanns, "A Neural Stimulator Frontend With High-Voltage Compliance and Programmable Pulse Shape for Epiretinal Implants," IEEE J. Solid-State Circuits, vol. 47, pp. 244-256, Jan 2012. [50] H. Chun, O. Kavehei, N. Tran, and S. Skafidas, "A flexible biphasic pulse generating and accurate charge balancing stimulator with a 1μW neural recording amplifier," in Proc. IEEE ISCAS, 2013, pp. 1885-1888. [51] C. C. Chen and K. T. Tang, "A 12V-500μA neuron stimulator with current calibration mechanism in 0.18μm standard CMOS process," in Proc. IEEE BioCAS, 2011, pp. 57-60.
|