|
[1]A.-V. Nurmikko, J.-P. Donoghue, L.-R. Hochberg, W.-R. Patterson, Y.-K. Song, C.-W. Bull, D.-A. Borton, F. Laiwalla, S. Park, Y. Ming, and J. Aceros, “Listening to Brain Microcircuits for Interfacing With External World - Progress in Wireless Implantable Microelectronic Neuroengineering Devices,” Proceedings of the IEEE, vol. 98, no. 3, pp. 375–388, March 2010. [2]A.-M. Lozano, J. Dostrovsky, R. Chen, and P. Ashby, “Deep brain stimulation for Parkinson’s disease: disrupting the disruption,” THE LANCET Neurology, vol.1, pp. 225-231, 2002. [3]K. Nowak, E. Mix, J. Gimsa, U. Strauss, K.-K. Sriperumbudur, R. Benecke, and U. Gimsa, “Optimizing a RodentModel of Parkinson's Disease for Exploring the Effects andMechanisms of Deep Brain Stimulation,” SAGE-Hindawi Access to Research Parkinson’s Disease, 414682, 19pp, 2011 [4]J. Xu, R.-F. Yazicioglu, B. Grundlehner, P. Harpe, K. A.-A. Makinwa, and C.-V. Hoof, “A 160uW 8-Channel Active Electrode System for EEG Monitoring,” IEEE International Solid-State Circuits Conference, Feb. 2011 [5]N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A.-P. Chandrakasan, “A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System,” IEEE Journal of Solid-State Circuits, VOL. 45, NO. 4, April 2010 [6]J. Guo, J. Yuan, J. Huang, J. K.-Y. Law, C.-K. Yeung, and M. Chan, “32.9 nV/rt Hz 60.6 dB THD Dual-Band Micro-Electrode Array Signal Acquisition IC,” IEEE Journal of Solid-State Circuits, VOL. 47, NO. 5, May 2012 [7]W.-M. Chen, H. Chiueh, T.-J. Chen, C.-L. Ho, C. Jeng, S.-T. Chang, M.-D. Ker, C.-Y. Lin, Y.-C. Huang, C.-W. Chou, T.-Y. Fan, M.-S. Cheng, S.-F. Liang, T.-C. Chien, S.-Y. Wu, Y.-L. Wang, F.-Z. Shaw, Y.-H. Huang, C.-H. Yang, J.-C. Chiou, C.-W. Chang, L.-C. Chou, C.-Y. Wu, “A Fully Integrated 8-Channel Closed-Loop Neural-Prosthetic SoC for Real-Time Epileptic Seizure Control,” IEEE International Solid-State Circuits Conference, Feb. 2013 [8]J. Lee, H.-G. Rhew, D.-R. Kipke, and M.-P. Flynn, “A 64 Channel Programmable Closed-Loop Neurostimulator With 8 Channel Neural Amplifier and Logarithmic ADC,” IEEE Journal of Solid-State Circuits, VOL. 45, NO. 9, Sept. 2010 [9]Z.-Y. Wang, ”Design of a low-noise, low-power amplifier for multichannel neural recording,” master's thesis in NTHU, May 2014 [10]D. Buxi, S. Kim, N.-V. Helleputte, M. Altini, J. Wijsman, R.-F. Yazicioglu, J. Penders, and C.-V. Hoof, “Correlation Between Electrode-Tissue Impedance and Motion Artifact in Biopotential Recordings,” IEEE Sensors Journal, VOL. 12, NO. 12, Dec. 2012 [11]R.-R. Harrison, “A Versatile Integrated Circuit for the Acquisition of Biopotentials,” IEEE Cust. Integr. Circuits Conference, no. Cicc, pp. 115–122, 2007. [12]R.-R. Harrison, and C. Charles, “A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications,” IEEE Journal of Solid-State Circuits, VOL. 38, NO. 6, June 2003 [13]S. Hong, S. Lee, T. Roh, and H.-J. Yoo, “A 46μW Motion Artifact Reduction Bio-Signal Sensor with ICA Based Adaptive DC Level Control for Sleep Monitoring System,” IEEE Custom Integrated Circuits Conference, Sept. 2012 [14]R. Muller, S. Gambini, and J.-M. Rabaey, “A 0.013 mm2, 5 μW, DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply,” IEEE Journal of Solid-State Circuits, VOL. 47, NO. 1, Jan. 2012 [15]A. Tajalli, Y. Leblebici and E.-J. Brauer, “Implementing ultra-high-value floating tunable CMOS resistors,” ELECTRONICS LETTERS, Vol. 44, No. 5, Feb. 2008 [16]M.-T. Shiue, K.-W. Yao and C. S.-A. Gong, “Tunable high resistance voltage-controlled pseudo-resistor with wide input voltage swing capability,” ELECTRONICS LETTERS, Vol. 47, No. 6, March 2011 [17]J. Citakovic, I.-R. Nielsen, J.-H. Nielsen, P. Asbeck and P. Andreani, “A 0.8V, 7μA, Rail-to-Rail Input/Output, Constant Gm Operational Amplifier in Standard Digital 0.18μm CMOS,” NORCHIP Conference, Nov. 2005 [18]Y. Zhang, Q. Meng, Z. Wang and S. Chen, “Constant-gm Low-Power Rail-to-Rail Operational Amplifier,” IEEE Wireless Communications & Signal Processing, Nov. 2009
|