帳號:guest(3.133.137.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周學志
作者(外文):Chou, Hsueh-Chih
論文名稱(中文):一種應用於NAND快閃記憶體的低複雜度低密度奇偶檢查碼之編解碼器
論文名稱(外文):A Low-Complexity LDPC Codec for NAND Flash Memory
指導教授(中文):翁詠祿
指導教授(外文):Ueng, Yeong-Luh
口試委員(中文):王忠炫
古孟霖
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061569
出版年(民國):102
畢業學年度:102
語文別:英文中文
論文頁數:60
中文關鍵詞:低密度奇偶檢查碼NAND快閃記憶體
外文關鍵詞:LDPCNAND Flash Memory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:788
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
傳統單層式儲存架構之NAND快閃記憶體多使用Hamming或是BCH碼等硬式決策技術來減緩因記憶格的錯誤而造成的影響,但由於電路越做越小的趨勢,隨著製程的逐漸縮小以及多層式儲存的技術的發展下,這些硬式決策技術的效能也地逐漸變差,以至於需要更強力的錯誤更正的方法來改善其效能,而低密度奇偶檢查碼即是一種擁有不錯的錯誤更正效能的軟式決策技術。在NAND快閃記憶體的應用上,高碼率和低成本的解碼器是不可或缺的。不規則的(18624, 16704)和(18432, 16704)碼率分別為0.896和0.906的準循環低密度奇偶檢查碼被用於本作中。我們以兩層式編碼器和一種低成本解碼架構來呈現應用於NAND快閃記憶體的低複雜度奇偶檢查碼的編解碼器。除此之外,編碼器-解碼器的共用得以降低實作複雜度。最後我們提出一種用於解碼器的低複雜度的檢查節點單元在不影響錯誤更正效能的前提下來最佳化檢查至變數節點訊息以降低儲存複雜度。此低密度奇偶檢查碼之編解碼器以TSMC 90奈米技術實現,在操作頻率166 MHz下編碼器可以達到4.03 Gb/s同時解碼器可以達到2.35 Gb/s的吞吐量。
Conventional NAND Flash memory with single-level cell architecture is implemented in hard-decision techniques such as Hamming or BCH codes to mitigate the effect of memory cell errors. However, it needs much more powerful error correction technique as these hard-decision techniques are not sufficient for multilevel technique and continuously scaled down cell size gradually. Low-density parity-check(LDPC) codes is a soft-decision technique with splendid error-rate performance. For NAND Flash applications, high-rate and low-cost decoders are required. Irregular (18624, 16704) and (18432, 16704) Quasi-Cyclic LDPC (QC-LDPC) code that has a code rate of 0.896 and 0.906 is used respectively. We presented a low-complexity LDPC Codec for NAND Flash implemented in two-stage encoder and a low-cost decoding architecture. In addition, encoder-decoder sharing is also implemented to reduce implementation complexity. Finally, we proposed a low-complexity check-node unit for decoder to optimize check-to-variable message to reduce storage complexity without error-rate performance loss. The LDPC Codec is implemented in TSMC 90-nm CMOS technology and the Two-Stage Encoder and the Decoder can achieve a throughput of 4.03Gb/s and throughput of 2.35Gb/s respectively at a clock frequency 166 MHz.
1 Introduction 1
2 Preliminary 3
2.1 NAND Flash and LDPC Codec . . . . . . . . . . . . . . . . . . 3
2.2 LDPC Codec for Flash Memory . . . . . . . . . . . . . . . . . . 5
2.2.1 Conventional Encoder and Two-Stage Encoder . . . . . . 8
2.2.2 Conventional Layered Normalized Min-Sum Decoder and
Modified Layered Normalized Min-Sum Decoder . . . . . 11
2.2.3 Related Optimization Works . . . . . . . . . . . . . . . . 16
3 Implementation of LDPC Codec and Proposed Low-Complexity
Check-Node Unit 18
3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Two-Stage Encoder . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Modified Layered Normalized Min-Sum Decoder . . . . . 21
3.1.3 Early Termination . . . . . . . . . . . . . . . . . . . . . 29
IV
3.1.4 Encoder-Decoder Sharing . . . . . . . . . . . . . . . . . 32
3.2 Proposed Low-Complexity Check-Node Unit . . . . . . . . . . . 35
3.2.1 E ect of Deep Quantization . . . . . . . . . . . . . . . . 35
3.2.2 Analysis of Error Correction Process . . . . . . . . . . . 36
3.2.3 Proposed Check-Node Unit . . . . . . . . . . . . . . . . 41
3.2.4 Implementation Results and Performance Evaluation . . 47
4 Conclusion 54
[1] E. Yaakobi, L. Grupp, P.H. Siegel, S. Swanson, and J.K.Wolf, "Character-
ization and error-correcting codes for TLC
ash memories" Proc. IEEE
Int. Conf. Comput., Netw. Commun., Maui, HI, pp. 486-491, Jan-Feb.
2012.
[2] W. Liu, J. Rho, and W. Sung, "Low-power high-throughput BCH error
correction VLSI design for multi-level cell NAND
ash memories" IEEE
Workshop on Signal Processing Systems (SIPS), pp. 303-308, 2006.
[3] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino,
L. Crippa, E. D. Martino, L. D. Onofrio, A. Gambardella, E. Grillea,
G. Guerra, D. Kim, C. Missiroli, I. Motta, A. Prisco, G. Ragone, M.
Romano, M. Sangalli, P. Sauro, M. Scotti and S. Won, "A 4Gb 2b/cell
NAND
ash memory with embedded 5b BCH ECC for 36MB/s system
read throughput" Proc. Intl Solid-State Circuits Conference, pp. 497-
506, Feb 2006.
[4] F. Sun, S. Devarajan, K. Rose, and T. Zhang, "Design of On-Chip Error
Correction Systems for Multilevel NOR and NAND Flash Memories" IET
Circuits, Devices and Systems, Vol.1, No.3, pp.241-249, June 2007.
[5] T.-H. Chen, Y.-Y. Hsiao, Y.-T. Hsing, and C.-W. Wu, "An adaptive-rate
error correction scheme for NAND
ash memory" Proc. IEEE VLSI Test
Symp. (VTS), pp. 53-58, May 2009.
[6] R. G. Gallager, "Low-density parity-check codes" IRE Trans. Inf. Theory,
Vol. IT-8, pp. 21-28, Jan. 1962.
[7] Digital Video Broadcasting (DVB); Second Generation Framing Struc-
ture, Channel Coding and Modulation Systems for Broadcasting, Interac-
tive Services, New Gathering and Other Broadband Satellite Applications
2004.
[8] LDPC coding for OFDMA PHY. 802.16REVe Sponsor Ballot Recircula-
tion Comment 2004, IEEE C802.16e-04/141r2.
[9] Joint Proposal: High Throughput Extension to the 802.11 Standard:
PHY. IEEE P802.11 Wireless LANs 2006, IEEE 802.11-05/1102r4.
[10] Yeong-Luh Ueng, Jyun-Kai Hu, and Hsueh-Chih Chou, "Layered Decod-
ing Architecture with Reduced Number of Hardware Bu ers for LDPC
Codes".
[11] Jyun-Kai Hu, "A Reduced-Complexity Layered Decoder Architecture for
High-Rate QC-LDPC Codes" NTHU Master Thesis.
[12] D. J. C. MacKay, "Good error-correcting codes based on very sparse ma-
trices" IEEE Trans. Inf. Theory, Vol. 45, No. 2, pp. 399-431, Mar. 1999.
[13] D. Hocevar, "A reduced complexity decoder architecture via layered de-
coding of LDPC codes" 11. IEEE Workshop on Signal Processing Sys-
tems, 2004, SIPS 2004, pp. 107-112, Oct. 2004.
[14] M. M. Mansour and N. R. Shanbhag, "High-throughput LDPC decoders"
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
11, pp. 976996, Dec. 2003.
[15] M. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity iterative
decoding of low-density parity-check codes based on belief propagation"
IEEE Trans. Commum., vol. 47, no. 5, pp. 673-680, May 1999.
[16] Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X.-Y. Hu,
"Reduced complexity decoding of LDPC codes" IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288-1299, Aug. 2005.
[17] J. Chen and M. P. C. Fossorier, "Density evolution for two improved BP-
based decoding algorithms of LDPC codes" IEEE Commum. Lett., vol.
6, pp.208-210, May 2002.
[18] F. Guilloud, E. Boutillon, and J.L. Danger, "λ-Min Decoding Algorithm
of Regular and Irregular LDPC Codes" In Proc. 3nd International Sym-
posium on Turbo Codes & Related Topics, pages 451454, Brest, France,
September 2003.
[19] O. Daesun and K. Parhi, "Min-sum decoder architectures with reduced
word length for LDPC codes" IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 1, pp. 105115, Jan. 2010.
[20] Xiaofu Wu, Yue Song, Long Cui, Ming Jiang, and Chunming Zhao,
"Adaptive-normalized min-sum algorithm" Future Computer and Com-
munication (ICFCC), 2010 2nd International Conference, vol.2, pp.V2-
661-V2-663, 21-24 May 2010.
[21] Chen, Rong, and Yi-ming Wang., "Modified Normalized Min-Sum decod-
ing of LDPC codes" Signal Processing, 2008. ICSP 2008. 9th International
Conference on. IEEE, 2008.
[22] L. Hai-yang, Q. U. Wen-ze L.Bin, L. Jiang-peng,L.Shi-dong, and C. Jie,
"Novel modified min-sum decoding algorithm for low-density paritycheck
codes" The Journal of China Universities of Posts and Telecommunica-
tions, vol. 17, pp. 1 -5, August 2010.
[23] Valentin Savin, "Self-corrected min-sum decoding of LDPC codes" Proc.
IEEE ISIT, pp. 146-150, Jul. 2008.
[24] T. Mohsenin, D. Truong, and B. Baas, "A low-complexity message-
passing algorithm for reduced routing congestion in LDPC decoders,"
IEEE Trans. Circuits Syst. I, vol. 57, no 5, pp. 1048-1061, May 2010.
[25] A. Darabiha, A. C. Carusone, and F. R. Kschischang, "Power reduction
techniques for LDPC decoders," IEEE J. Solid-State Circuits, vol. 43, no
8, pp. 1835-1845, Aug. 2008.
[26] Kin-Chu Ho, Po-Chao Fang, Hsiang-Pang Li, C.-Y.M. Wang, and Hsie-
Chia Chang. "A 45nm 6b/cell Charge-Trapping Flash Memory Using
LDPC-Based ECC and Drift-Immune Soft-Sensing Engine" In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE In-
ternational, pages 222223, 2013.
[27] H. Zhong, W. Xu, N. Xie, and T. Zhang, "Area-ecient min-sum decoder
design for high-rate quasi-cyclic low-density parity-check codes in mag-
netic reording" IEEE Trans. Magn., vol. 43, no. 12, pp. 41174122, Dec.
2007.
[28] J. Kim, J. Cho, and W. Sung, "A high-speed layered min-sum LDPC
decoder for error correction of NAND Flash memories" in Proc. IEEE
Int. Midwest Symp. Circuits Syst., Aug. 2011, pp. 14.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *