帳號:guest(18.227.79.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱于芳
作者(外文):Chiu, Yu-Fang
論文名稱(中文):應用於即時人體呼吸特徵萃取之低複雜度超寬頻雷達訊號處理系統
論文名稱(外文):A Low-Complexity UWB-Radar Signal Processing System for Real-Time Human Respiratory Feature Extraction
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):黃元豪
張錫嘉
吳仁銘
楊家驤
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061568
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:82
中文關鍵詞:超寬頻雷達呼吸訊號呼吸特徵即時訊號處理
外文關鍵詞:UWB radarrespiratory signalrespiratory featurereal time signal processing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:301
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
此論文提出了可在超寬頻雷達系統擷取人體呼吸訊號中,分析且萃取呼吸訊號特徵的演算法,並且real time實作在訊號處理系統的平台上。在傳統的雷達偵測呼吸訊號的演算法中,大多以偵測出呼吸頻率為主要目標,並將偵測到的頻率用在醫療診斷中。然而在雷達偵測出的人體呼吸訊號中,除了呼吸頻率外,事實上含有更多可以提供醫護人員做為診斷的資訊。因此我們提出了Four Segment Linear Wave的訊號模型來模擬原始呼吸的波形,使用了early stop correlation的方式來取得model中的參數,而這些參數的意義表示了呼吸波形中除了頻率的其餘特徵,例如呼吸的強度、吸氣的狀態、呼氣的狀態、以及呼氣吸氣間轉換的停止狀態。另外,將呼吸model化並取得呼吸特徵參數也可視為壓縮後的呼吸訊號,可以應用在遠端照護監視系統中當作傳輸的標的,如此一來,在不失原本呼吸趨勢的情況下,要表示一周期的人體呼吸可以只用些許的參數來取代至少上千點的取樣資料,明顯的很大的減少需要儲存資料量,也就是使用次方法後可以減少傳輸的頻寬,以及節省傳送的電力消耗。最後,我們此演算法以硬體實現,並透過FPGA邏輯晶片來結合超寬頻雷達系統完成real time的系統驗證。此裝置可適用於呼吸頻率介於0.1Hz到1Hz間的人體呼吸訊號,對於每個呼吸週期分析及萃取。
This paper presents a real time ultra-wideband (UWB) impulse-radio radar signal processing platform with reduced complexity. This platform is integrated with a radar
front-end chip for human respiratory feature extraction and signal compression. Conventional radar detection algorithms only extract respiration rate for medical diagnosis. However, there is more useful information in the radar-detected respiratory signals for medical diagnosis. Thus, this study proposed a four segment linear wave model and an
iterative correlation search algorithm to extract more respiratory features, such as inspiration and expiration speed, respiration intensity, and respiration holding ratio between inspiration and expiration. Moreover, since the iterative correlation search algorithms involves high computation cost, this study applies an early termination scheme and down sampling to reduce the complexity with negligible performance degradation. The extracted features are also useful in a remote medical monitoring system because they can be regarded as compressed respiratory signals. One-period human respiratory cycle can be expressed by extracted features instead of lots of samples. Transmission bandwidth or storage capacity can be greatly saved by transmitting or storing the extracted
features. The proposed algorithm and architecture was designed and implemented on a real time radar signal processing platform with a FPGA chip. Human respiratory
signals from 0.1 to 1 Hz rate are detected and analyzed along with other information in each period.
1 Introduction
1.1 Background
1.2 UWB Radar System
1.3 Research Motivation
1.4 Thesis Organization
2 Human Respiratory Features and Respiration Model
2.1 Human Respiratory Features
2.2 Sine Model
2.3 Raised Cosine Model
2.4 Modified Raised Cosine Model
2.5 Four Segments Linear Model
3 Human Respiratory Feature Extraction Algorithm
3.1 Human Respiratory Rate Estimation
3.1.1 Coarse Respiratory Rate Estimation
3.1.2 Fine Respiratory Rate Estimation with Chirp-Z Transform
3.1.3 Maximum Frequency Component Detector
3.2 Human Respiratory Features Extraction
3.2.1 Iterative Correlation Search Algorithm
3.2.2 Iterative Correlation Search with Early Termination
3.3 Simulation Results
3.3.1 Comparison between CZT and FFT
3.3.2 Analysis and Synthesis Results
3.3.3 Complexity and Performance Comparison of MRCM and FSLM
3.3.4 Complexity and Performance with Early Termination
4 Architecture Design
4.1 Architecture Overview
4.2 Human Respiratory Rate Estimation Block
4.3 Iterative Correlation Search Block
5 Implementation Results
5.1 UWB Radar Signal Processing System
5.2 Verification Results
5.2.1 Pre-Synthesis Verification
5.2.2 System Verification
6 Conclusion
[1] S. Chang, M. Wolf, and J. Burdick, “Human detection and tracking via ultra-wideband (uwb) radar,” in Proc. IEEE Robot. Autom. Conf., may 2010, pp. 452–457.
[2] T.-S. Chu, J. Roderick, S. Chang, T. Mercer, C. Du, and H. Hashemi, “A short-range uwb impulse-radio cmos sensor for human feature detection,” in ISSCC Dig. Tech. Papers, Feb. 2011, pp. 294–296.
[3] C. Caro and J. Bloice, “Contactless apnoea detector based on radar,” in Lancet, vol. 2(7731), Oct. 1971, pp. 959–961.
[4] B. B. C. Franks and D. Johnston, “Contactless respiration monitoring of infants,”in Med. Biol. Eng, vol. 14(3), Oct. 1976, pp. 306–318.
[5] B. B. C. Franks, J. Watson and E. Foster, “Respiratory pattems and risk of sudden unexpected death in infancy,” in Arch. Dis. Child, vol. 55(8), Aug. 1980, pp. 595–604.
[6] E. Staderini, “Uwb radars in medicine,” in Aerospace and Electronic Sytems Magazine, IEEE, vol. 17, no. 1, Jan. 2002, pp. 13–18.
[7] E. S. A. S. G. Ossberger, T. Buchegger and R. Weigel, “Non-invasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar,” in IEEE International Workshop on ULTRA Wideband Systems, Joint with Conference on Ultrawideband Systems and Technilogies, May 2004.
[8] N. R. S. Venkatesh, C. Anderson and R. Buehrer, “Implementation and analysis of
respiration-rate estimation using impulse-based uwb,” in IEEE Military Communication Conference, Oct. 2005.
[9] I. Immoreev and T. Tao, “Uwb radar for patient monitoring,” in Aerospace and Electronic Sytems Magazine, IEEE, vol. 23, no. 11, Nov. 2008, pp. 11–18.
[10] G. S. Chung, B. H. Choi, K. K. Kim, Y. G. Lim, J. W. Choi, D.-U. Jeong, and K. S. Park, “Rem sleep classification with respiration rates,” in Proc. 6th Int. Special Topic Conf. Inf. Tech. Applicat. Biomedicine, Nov. 2007, pp. 194–197.
[11] S. I. Ivashov, V. V. Razevig, A. P. Sheyko, and I. A. Vasilyev, “Detection of human breathing and heartbeat by remote radar,” in Proc. Progress Electromagnetics Research Symp., Pisa, Italy, Mar. 2004.
[12] Z. Yong-Shun, K. Lingjiang, C. Guo-Long, and Y. Jian-Yu, “Remote sensing of human body by stepped-frequency continuous-wave,” in Conf. Rec. 3rd Int. Conf.
Bioinformatics Biomedical Eng., June 2009, pp. 1–4.
[13] A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, “Vital signs monitoring using impulse based uwb signal,” in Conf. Rec. 41th EuMC, Oct. 2011, pp. 135–138.
[14] M. Chia, S. Leong, C. Sim, and K. Chan, “Through-wall uwb radar operating within fcc’s mask for sensing heart beat and breathing rate,” in Proc. European Microw. Conf., vol. 3, Oct. 2005, pp. 267–270.
[15] M. Baboli, S. Ghorashi, N. Saniei, and A. Ahmadian, “A new wavelet based algorithm for estimating respiratory motion rate using uwb radar,” in Proc. ICBPE,
Dec. 2009, pp. 1–3.
[16] M. Leib, W. Menzel, B. Schleicher, and H. Schumacher, “Vital signs monitoring with a uwb radar based on a correlation receiver,” in Proc. Rec. 4th EuCAP, April
2010, pp. 1–5.
[17] M. Baboli, A. Sharafi, A. Ahmadian, and M. Nambakhsh, “An accurate and robust algorithm for detection of heart and respiration rates using an impulse based uwb
signal,” in Proc. ICBPE, Dec. 2009, pp. 1–4.
[18] B. Oneda, K. C. Ortega, J. L. Gusmao, T. G. Araujo, and D. M. Jr., “Sympathetic nerve activity is decreased during device-guided slow breathing,” in Hypertens Research
, Dec. 2010, pp. 708–712.
[19] P. A. Derchak, A. W. Sheel, B. J. Morgan, D. F. Pegelow, and J. A. Dempsey,“Effects of expiratory muscle work on muscle sympathetic nerve activity,” in J. Applied Physiology, 2002.
[20] Y.-F. C. T.-S. C. Chi-Hsuan Hsieh, Yi-Hsiang Shen and Y.-H. Huang, “Human respiratory feature extraction on an uwb radar signal processing platform,” in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, May 2013, pp. 1079–1082.
[21] X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system,” in Proc. Int. Symp. Circuits Syst., May 2002, pp. I–597–I–600.
[22] L. Rabiner, R. Schafer, and C. Rader, “The chirp z-transform algorithm,” vol. 17, no. 2, Jun. 1969, pp. 86- 92.
[23] W. Cochran, J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang, J. Maling, G., D. Nelson, C. Rader, and P. Welch, “What is the fast fourier transform?” vol. 15, no. 2, Jun. 1967, pp. 45–55.
[24] A. Lazaro, D. Girbau, and R. Villarino, “Analysis of vital signs monitoring using an ir-uwb radar,” in Proc. Int. Electromagnetics Research, vol. 100, May 2010, pp.
265–284.
[25] T. G. Stockham, Jr., “High-speed convolution and correlation,” in Proc. Spring Joint Comput Conf., Washington, D.C., 1966, pp. 229–233.
[26] J. Volder, “The cordic trigonometric computing technique,” in IRE Trans. Electron. Compute., vol. EC-8, 1959, pp. 330–334.
[27] M. Brandstein and H. Silverman, “A robust method for speech signal time-delay estimation in reverberant rooms,” in Proc. ICASSP, vol. 1, Apr. 1997, pp. 375 –378.
[28] S. H. Chang, R. Sharan, M.Wolf, N. Mitsumoto, and J. Burdick, “Uwb radar-based human target tracking,” in Proc. IEEE Radar Conf., May 2009, pp. 1–6.
(此全文限內部瀏覽)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *