帳號:guest(18.226.17.69)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):薛建富
作者(外文):Hsueh, Chien-Fu
論文名稱(中文):可調變電場吸氣式離子遷移譜儀研究
論文名稱(外文):A Study of Swept-Field Aspiration Condenser as an Ion Mobility Spectrometry
指導教授(中文):鄭桂忠
指導教授(外文):Tang, Kea-Tiong
口試委員(中文):饒達仁
趙昌博
口試委員(外文):Da-Jeng Yao
Paul C.-P. Chao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061563
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:76
中文關鍵詞:離子遷移圖譜
外文關鍵詞:Ion mobility spectrometry
相關次數:
  • 推薦推薦:0
  • 點閱點閱:562
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氣體辨識一直是一重要且切關生活的研究課題,不僅是在科學研究上常以氣相分析不明化學物質,在國防維安上常利用氣體辨識偵測爆裂物、毒氣、毒品,此外大至環境監測,小至醫學檢驗、個人健康照護也常看見氣體辨識系統的身影。
本研究所探討的氣體辨識技術是離子遷移譜儀,離子遷移譜儀自70年代開始發展至今已是一成熟且可靠的技術,普遍應用於機場維安、化學戰劑及有毒工業化合物偵測。離子遷移譜儀是一藉由電場加速氣體離子團以達到分析位置氣體成分的技術,傳統的離子遷移譜儀在均勻電場中加速氣體離子團並記錄其飛行時間用以分析資訊,一般常見的離子遷移譜儀具有5至12公分長之氣體離子飄移管,加以300V/cm~600V/cm的電場,因此不論是在體積及電壓需求上皆會使其應用範圍受到限制。
本研究之基礎是基於Heikki Pakkanen 在 1991 年提出用於化學戰劑偵測用之多頻道吸氣式離子遷移譜儀,在此種離子遷移譜儀之電場方向與氣流方向垂直,所需之外加電場電壓視其設計需求,一般約在數十伏特之上下,此種構型之離子遷移譜儀雖具有低電壓需求及方便製造、維護之優點,但其對氣體之辨識能力並不如傳統分析氣體飄移時間之離子遷移譜儀優秀,為提升其氣體辨識能力,本研究加入可調變電場機制,使其能獲取代測氣體中完整的氣體離子資訊,並配合Discrete Tammet Transform對量測得之訊號進行分析。此外本研究對吸氣式飄移管中之氣體離子團運動特性提出了基於氣體擴散效應的分析及轉換方程,此轉換方程與Discrete Tammet Transform相比更加貼近氣體飄移管中離子的分布情形,幫助我們了解吸氣式離子遷移圖譜的訊號特性。
IMS (Ion Mobility Spectrometry) is a well-known gas analytical technique for ionized gas molecular. In the past decades, IMS has been widely used for detecting hazardous compounds, explosives and chemical warfare agent. Recently, IMS also established a strong foot hold in medical application like detection of drug abuse, clinical examination and personal health care.
In this research, we established an aspiration condenser as an ion mobility spectrometry. Ionized gas molecular are separated by electric field intersect with carrier gas flow. Gas recognition in aspiration condenser usually done by analyzing multi-channel data. Heikki Pakkanen proposed a multi-channel aspiration condenser for CWA(chemical warfare agent) detection in 1991 and become a popular solution for military purpose. Although aspiration condenser is good at chemical compounds fast detection, the poor analyzing and gas recognition ability limit it application. The aspiration condenser designed in this research is based on the model proposed by Emilio Sacristan and Andro A. Solis. Swept-field mechanism and Discrete Tammet Transform increased the gas recognition ability in aspiration condenser. We introduce the effect of Brownian motion in aspiration condenser and modified the analyze process and transform equation. The new transform equation had been examed with experiment and the result shows Brownian motion has unnegligible effect in aspiration condenser.
中文摘要 i
Abstract ii
致謝 iii
圖目錄 vi
第1章 緒論 1
1.1 離子遷移譜儀概論 1
1.2 IMS原理 2
1.3 大氣常壓化學游離反應 3
1.4 研究動機 6
1.5 論文架構 8
第2章 文獻回顧 9
2.1 常見之IMS型式分析 9
2.1.1 飛行時間式離子遷移譜儀 9
2.1.2 微分遷移譜儀 (Differential Mobility Spectrometry, DMS) 12
2.1.3 吸氣式離子遷移譜儀(Aspiration condenser as an Ion Mobility Spectrometry) 15
2.2 Tammet Transform 17
2.3 Discrete Tammet Transform(DITT) 19
第3章 系統架構 24
3.1 系統整體概觀 24
3.2 訊號偵測電路 25
3.3 氣體飄移管製作 29
3.4 可調變電場控制 30
第4章 實驗結果與討論 32
4.1.1 實驗配置 32
4.1.2 實驗氣體 33
4.1.3 實驗步驟 36
4.2 實驗結果 39
4.2.1 訊號特性分析 39
4.3 資料分析 46
4.3.1 46
4.3.2 Discrete Tammet Transform 52
4.4 氣體擴散效應在Discrete Tammet Transform中之影響 58
4.4.1 擴散效應與離子遷移率之關係 58
4.4.2 建立擴散效應模型 59
4.4.3 驗證 64
4.5 實驗討論 71
第5章 結論與未來展望 73
參考文獻 74
[1] Gushinder Kaur-Atwal, “Chemical standards for ion mobility spectrometry: a review”, Int. J. Ion Mobil. Spec. (2009) 12:1–14
[2] Mikko Utriainen, “Combining miniaturized ion mobility spectrometer and metal oxide gas sensor for the fast detection of toxic chemical vapors”, Sens. Actuat. B-chem. 2003,93(1-3), pp. 17-24
[3] G.Reid Asbury, Herbert H Hill Jr., “Separation of amino acids by ion mobility spectrometry”, Journal of Chromatography A, Volume 902, Issue 2, 15 December 2000, Pages 433-437, ISSN 0021-9673, 10.1016/S0021-9673(00)00799-8
[4] Raatikainen,O, ”Fish quality assessment with ion mobility based gas detector. “ Mededelingen Rijksuniversiteit Te Gent Fakulteit Van De Landbouwkundige En Toegepaste Biologische Wetenschappen, 66(3b), 475-480.
[5] Tapio Kotiaho, Membrane inlet ion mobility spectrometry for on-line measurement of ethanol in beer and in yeast fermentation, Anal Chem. Acta 1995,309 pp.317-325.
[6] Elham Jazan, Hadi Mirzaei, Direct analysis of human breath ammonia using corona discharge ion mobility spectrometry, Journal of Pharmaceutical and Biomedical Analysis, Volume 88, 25 January 2014, Pages 315-320, ISSN 0731-7085
[7] Richard C. Flagan,” History of Electrical Aerosol Measurements” Aerosol Science and Technology, Vol. 28, Iss. 4, 1998
[8] Stefan Zimmermann, Frank Gunzer, Simultaneous detection of benzene and toluene using a pulsed ion mobility spectrometer, Sensors and Actuators B: Chemical, Volume 188, November 2013, Pages 106-110, ISSN 0925-400
[9] A. Good, D. A. Durden, and P. Kebarle, “Ion–Molecule Reactions in Pure Nitrogen and Nitrogen Containing Traces of Water at Total Pressures” 0.5–4 torr. Kinetics of Clustering Reactions Forming H+(H2O)n, J. Chem. Phys. 52, 212 (1970)
[10] M. M. Shahin, “Mass‐Spectrometric Studies of Corona Discharges in Air at Atmospheric Pressures”, J. Chem. Phys. 45, 2600 (1966)
[11] Wolfgang Vautz, Bertram Bödeker, Jörg Ingo Baumbach, Sabine Bader, Michael Westhoff, Thorsten Perl, “An implementable approach to obtain reproducible reduced ion mobility”, International Journal for Ion Mobility Spectrometry June 2009, Volume 12, Issue 2, pp 47-57

[12] T. Brunner, A.R. Mueller, K. O’Sullivan, M.C. Simon, M. Kossick, S. Ettenauer, A.T. Gallant, E. Mané, D. Bishop, M. Good, G. Gratta, J. Dilling, A large Bradbury Nielsen ion gate with flexible wire spacing based on photo-etched stainless steel grids and its characterization applying symmetric and asymmetric potentials, International Journal of Mass Spectrometry, Volume 309, 1 January 2012, Pages 97-103, ISSN 1387-3806, 10.1016/j.ijms.2011.09.004.
[13] Blanchard, William C,” Electric field control in ion mobility spectrometry” pat. No. US 4855595, 1989
[14] Hill Jr., Herbert Henderson, Tam, Maggie,” Ion mobility spectrometry method and apparatus” pat. No. US 7071465, 2006
[15] 范欣然 “ 用於離子遷移譜儀的瞬態飄移電場研究” 中國科學院研究生院,2007年4月
[16]Gary Eiceman, slide of “Royal Society of Chemistry, The reaction chemistry and mobility of gas phase ions in air at ambient pressure for chemical measurements and characterization of ion-molecule associations, July 28, 2010 Loughborough, England.”
[17] Huxley, L.G.H. , Cromptom, R.W., and Elford, M.T.,” Use of the parameter E/N”, Br. J. Appl. Physs, 1967, 18,691
[18] Ashley Wilks, Matthew Hart, Andrew Koehl, John Somerville, Billy Boyle, David Ruiz-Alonso, “Characterization of a miniature, ultra-high-field, ion mobility spectrometer” Int. J. Ion Mobil. Spec. 2012 15:199–222
[19] R.G. Harrison, K.L. Aplin, M.J. Rycroft, Atmospheric electricity coupling between earthquake regions and the ionosphere, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 72, Issues 5–6, April 2010, Pages 376-381, ISSN 1364-6826,
[20] H. Tammet, Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA, Atmospheric Research, Volume 82, Issues 3–4, December 2006
[21] Stefan Zimmermann., Nora Abel, Wolfgang Baether, Sebastian Barth, “An ion-focusing aspiration condenser as an ion mobility spectrometer” Sensors and Actuators B 125 (2007) 428–434
[22] E. Sacristan, A.A. Solis, A swept-field aspiration condenser as an ion mobility spectrometer, IEEE Trans. Instrum. Meas. 47 (3) (1998) 769–775.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *