帳號:guest(18.191.87.134)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林靖祐
作者(外文):Lin, Jing-You
論文名稱(中文):運用晶格縮減的軟式輸出之 8x8 64QAM 多輸入多輸出偵測器
論文名稱(外文):A 8x8 64-QAM Soft-Output MIMO Detector with Lattice-Reduction
指導教授(中文):黃元豪
指導教授(外文):Huang, Yuan-Hao
口試委員(中文):陳喬恩
蔡佩芸
楊家驤
黃元豪
口試委員(外文):Chen, Chiao-En
Tsai, Pei-Yun
Yang, Chia-Hsiang
Huang, Yuan-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061560
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:71
中文關鍵詞:晶格縮減軟式輸出多輸入多輸出
外文關鍵詞:lattice reductionsoft-outputMIMO
相關次數:
  • 推薦推薦:0
  • 點閱點閱:977
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
因為高速傳輸的需求日漸成長,多輸入多輸出的技術更加受歡迎,因此,設計一個高效能且低複雜度的多輸入多輸出的偵測器是一個重要議題。晶格縮減可以藉由強化傳輸矩陣來提升偵測的效能,另一方面循環式的偵測及解調可藉著交換可信度訊息來提升傳輸效果。這篇論文著重於結合這兩者的技術並且設計一種有效計算可信度訊息的方法。儘管運用晶格縮減的偵測器無法在偵測中加入可信度訊息,但是我們的演算法在高傳輸的多輸入多輸出系統中效能上超越許多循環式的偵測及解調演算法和運用晶格縮減的軟式輸出偵測器。最後我們提出來的演算法在TSMC 90nm 1P9M CMOS的製程下能達到6.4G LLRs/s的超快傳輸速度。
Because the demand of high-throughput transmission grows in recent years, the multiple-input multiple-output (MIMO) has become a popular technique to increase the trans-mission throughput. Thus, design of a high-performance and low-complexity MIMO detector is an important issue. To improve the performance of a MIMO detector, lattice-reduction (LR) has been proposed to enhance the property of the channel matrix. On the other hand, iterative detector-and-decoder (IDD) becomes an effective technique to improve transmission performance by exchanging reliable information such as log
likelihood ratio between a detector and a decoder. This thesis focuses on combining the LR and IDD technique and devising an effective method to calculate the reliable
information. Although the proposed LRA detector does not adopt the reliable information produced by soft-input soft-output decoder in detection process, the performance of proposed LRA soft-output K-best detector has a better performance than those of the latest IDD algorithms and existing LRA soft-output detectors in high dimension MIMO systems. Finally, the proposed LRA soft-output K-best detector is implemented in TSMC 90nm 1P9M CMOS process and occupied 3.0674mm2 core area at its maximum frequency 133.3 MHz and maximum throughput 6.4G LLRs per second when 64QAM is applied.
1 Introduction 1
1.1 MIMO Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Lattice Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 LLR Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 LRA soft-input soft-output detector . . . . . . . . . . . . . . . . . . . . . 4
1.5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Channel Model and Lattice Reduction-Aided MIMO detector 9
2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 QR decomposition Algorithm with Givens Rotation Method . . . . . . . 11
2.3 Lattice Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Lattice-Reduction-Aided MIMO Detector . . . . . . . . . . . . . . . . . . 18
2.5 Sorting-Reduced K-best Detector . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Soft-Output MIMO Detection Algorithm . . . . . . . . . . . . . . . . . . 24
2.6.1 Repeat Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.2 Single Tree Search . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Proposed Soft-Output LRA MIMO Detector 31
3.1 Algorithm with optimum Fixed LLR Clipping . . . . . . . . . . . . . . . 31
ii CONTENTS
3.2 Algorithm with optimum Last LLR Clipping . . . . . . . . . . . . . . . . 37
3.3 Algorithm with optimum Last LLR Clipping and LLR reset . . . . . . . 43
3.4 ECTLLL Soft-Output SR IMP K-best Detector . . . . . . . . . . . . . . 47
4 Architecture 51
4.1 LLR calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Hardware architecture . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.3 Timing schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.4 Multiple Instances for pipeline application . . . . . . . . . . . . . 56
4.2 Fixed-point simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Proposed ECTLLL Soft-Output SR K-best Detector . . . . . . . . . . . . 60
4.3.1 FPGA implementation . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Core Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5 Conclusion and Future Work 65
[1] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding: algorithms and vlsi implementation,” Selected Areas in Communications, IEEE Journal on, vol. 26, no. 2, pp. 290–300, 2008.
[2] R. Wang and G. Giannakis, “Approaching mimo channel capacity with reduced-complexity soft sphere decoding,” in Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE, vol. 3, 2004, pp. 1620–1625 Vol.3.
[3] C. Studer, M. Wenk, A. Burg, and H. Bolcskei, “Soft-output sphere decoding: Performance and implementation aspects,” in Signals, Systems and Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on, 2006, pp. 2071–2076.
[4] C. Studer, A. Burg, and H. Bolcskei, “Soft-output sphere decoding: algorithms and vlsi implementation,” Selected Areas in Communications, IEEE Journal on, vol. 26, no. 2, pp. 290–300, 2008.
[5] C. Studer and H. Bolcskei, “Soft-input soft-output sphere decoding,” in Information Theory, 2008. ISIT 2008. IEEE International Symposium on, 2008, pp. 2007–2011.
[6] ——, “Soft-input soft-output single tree-search sphere decoding,” Information Theory, IEEE Transactions on, vol. 56, no. 10, pp. 4827–4842, 2010. 68 BIBLIOGRAPHY
[7] C. Studer, S. Fateh, and D. Seethaler, “Asic implementation of soft-input soft-output mimo detection using mmse parallel interference cancellation,” Solid-State
Circuits, IEEE Journal of, vol. 46, no. 7, pp. 1754–1765, 2011.
[8] M. Seysen, “Simultaneous reduction of a lattice basis and its reciprocal basis,”Combinatorica, vol. 13, no. 3, pp. 363–376, 1993.
[9] A. Lenstra, J. Lenstra, H.W., and L. Lovsz, “Factoring polynomials with rational coefficients,” Mathematische Annalen, vol. 261, no. 4, pp. 515–534, 1982.
[10] Y.-H. H. Chun-Fu Liao, Jhong-Tu Wang, “A 3.1gbps 8x8 sorting reduced k-best detector with lattice reduction and qr decomposition,” 2013.
[11] P. Silvola, K. Hooli, and M. Juntti, “Suboptimal soft-output map detector with lattice reduction,” Signal Processing Letters, IEEE, vol. 13, no. 6, pp. 321–324,
2006.
[12] D. Milliner and J. Barry, “Cth09-4: A lattice-reduction-aided soft detector for multiple-input multiple-output channels,” in Global Telecommunications Confer-
ence, 2006. GLOBECOM ’06. IEEE, 2006, pp. 1–5.
[13] V. Ponnampalam, D.McNamara, A. Lillie, andM. Sandell, “On generating soft outputs for lattice-reduction-aided mimo detection,” in Communications, 2007. ICC ’07. IEEE International Conference on, 2007, pp. 4144–4149.
[14] X.-F. Qi and K. Holt, “A lattice-reduction-aided soft demapper for high-rate coded mimo-ofdm systems,” Signal Processing Letters, IEEE, vol. 14, no. 5, pp. 305–308,
2007.
[15] W. Zhang and X. Ma, “Approaching optimal performance by lattice-reduction aided soft detectors,” in Information Sciences and Systems, 2007. CISS ’07. 41st Annual
Conference on, 2007, pp. 818–822. BIBLIOGRAPHY 69
[16] ——, “Low-complexity soft-output decoding with lattice-reduction-aided detectors,” Communications, IEEE Transactions on, vol. 58, no. 9, pp. 2621–2629, 2010.
[17] U. Ahmad, M. Li, S. Pollin, C. Desset, L. Van der Perre, and R. Lauwereins, “Lattice reduction aided selective spanning with fast enumeration for soft-output
mimo detection,” in Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European, 2012, pp. 51–55.
[18] S. Roger, A. Gonzalez, V. Almenar, and G. Matz, “An efficient fixed-complexity sphere decoder with quantized soft outputs,” Communications Letters, IEEE, vol. 16, no. 11, pp. 1828–1831, 2012.
[19] K. Nikitopoulos and G. Ascheid, “Complexity adjusted soft-output sphere decoding by adaptive llr clipping,” Communications Letters, IEEE, vol. 15, no. 8, pp. 810–
812, 2011.
[20] I.-W. Lai, C.-Y.Wang, T.-D. Chiueh, G. Ascheid, and H. Meyr, “Asymptotic coded ber analysis for mimo bicm-id with quantized extrinsic llr,” Communications, IEEE
Transactions on, vol. 60, no. 10, pp. 2820–2828, 2012.
[21] R. Gohary and T. Willink, “On llr clipping in bicm-idd non-coherent mimo communications,” Communications Letters, IEEE, vol. 15, no. 6, pp. 650–652, 2011.
[22] J. Zheng, B. Bai, and Y. Li, “Clipping value estimate for iterative tree search detection,” Communications and Networks, Journal of, vol. 12, no. 5, pp. 475–479,
2010.
[23] S. Schwandter, P. Fertl, C. Novak, and G. Matz, “Log-likelihood ratio clipping in mimo-bicm systems: Information geometric analysis and impact on system capacity,” in Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, 2009, pp. 2433–2436.
70 BIBLIOGRAPHY
[24] E. Zimmermann, D. Milliner, J. Barry, and G. Fettweis, “Optimal llr clipping levels for mixed hard/soft output detection,” in Global Telecommunications Conference,
2008. IEEE GLOBECOM 2008. IEEE, 2008, pp. 1–5.
[25] D. Milliner, E. Zimmermann, J. Barry, and G. Fettweis, “Channel state information based llr clipping in list mimo detection,” in Personal, Indoor and Mobile Radio
Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on, 2008, pp. 1–5.
[26] M. Myllyla, J. Antikainen, M. Juntti, and J. Cavallaro, “The effect of llr clipping to the complexity of list sphere detector algorithms,” in Signals, Systems and Comput-
ers, 2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on, 2007, pp. 1559–1563.
[27] S. Aubert, A. Ancora, and F. Nouvelle, “Multi-level log-likelihood ratio clipping in a soft-decision near-maximum likelihood detector,” in ICDT 2011, The Sixth
International Conference on Digital Telecommunications, 2011, pp. 30–35.
[28] Q. Li, J. Zhang, L. Bai, and J. Choi, “Lattice reduction-based approximate map detection with bit-wise combining and integer perturbed list generation,” Commu-
nications, IEEE Transactions on, vol. 61, no. 8, pp. 3259–3269, 2013.
[29] M. Shabany and P. Gulak, “The application of lattice-reduction to the k-best algorithm for near-optimal mimo detection,” in Circuits and Systems, 2008. ISCAS
2008. IEEE International Symposium on, 2008, pp. 316–319.
[30] C.-F. Liao and Y.-H. Huang, “Cost reduction algorithm for 8x8 lattice reduction aided k-best mimo detector,” in Signal Processing, Communication and Computing
(ICSPCC), 2012 IEEE International Conference on, 2012, pp. 186–190. BIBLIOGRAPHY 71
[31] P.-Y. Tsai, W.-T. Chen, X.-C. Lin, and M.-Y. Huang, “A 4x4 64-qam reduced-complexity k-best mimo detector up to 1.5gbps,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, 2010, pp. 3953–3956.
[32] C.-H. Liao, T.-P. Wang, and T.-D. Chiueh, “A 74.8 mw soft-output detector ic for 8 x 8 spatial-multiplexing mimo communications,” Solid-State Circuits, IEEE Journal of, vol. 45, no. 2, pp. 411–421, 2010.
[33] G. Knagge, M. Bickerstaff, B. Ninness, S. R. Weller, and G. Woodward, “A vlsi 88 mimo near-ml decoder engine,” in Signal Processing Systems Design and Implementation, 2006. SIPS ’06. IEEE Workshop on, 2006, pp. 387–392.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *