|
Reference
[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, "Introduction to flash memory," Proceedings of the IEEE, vol. 91, pp. 489-502, 2003. [2] F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, "New ultra high density EPROM and flash EEPROM with NAND structure cell." International Electron Devices Meeting, pp. 552-555, 1987. [3] M. Bauer et al., "A multilevel-cell 32 Mb flash memory, " in ISSCC Dig. Tech. Papers., pp. 132-133 Feb. 1995. [4] H.Tanaka, "Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory," Symposium on VLSI Technology Digest of Technical Papers (VLSIT), pp. 14-15, 2007. [5] M. White, “On the go with SONOS”, IEEE Circuits and Designs, pp.22-31, 2000. [6] Ryota Katsumata et al., "Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices" Symposium on. VLSI Technology, pp. 136-137 June 2009. [7] Jiyoung Kim Novel et al., "Vertical-Stacked-Array-Transistor (VSAT) for ultra- high-density and cost-effective NAND Flash memory devices and SSD (Solid State Drive)." VLSI Technology, Symposium on. pp. 186-187 June 2009. [8] Jaehoon Jang et al., "Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra high density NAND flash memory." VLSI Technology, Symposium on. pp. 192-193 June 2009. [9] Hang-Ting Lue et al., "BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability" Tech. Digest of International Electron Devices Meeting (IEDM), pp. 547-550, 2005. [10] Hang-Ting Lue et al., "A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device" Tech. Digest of International Electron Devices Meeting (IEDM), pp. 131-132, 2010. [11] R. Liu, "Reliability of Barrier Engineered Charge Trapping Devices for Sub-30nm NAND Flash," Tech. Digest of International Electron Devices Meeting (IEDM), pp. 745-748, 2009. [12] Chun-Hsiung Hung et al., "3D Stackable Vertical-Gate BE-SONOS NAND Flash with Layer-Aware Program-and-Read Schemes and Wave-Propagation Fail-Bit-Detection against Cross-Layer Process Variations," Symposium on VLSI Circuits, pp. C20-C21, 2013. [13] K.-D. Suh, "A 3.3 V 32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme," IEEE J. Solid-State Circuits, pp. 1149-1156, 1995. [14] T. Tanaka et al., “A quick intelligent program architecture for 3 V only NAND-EEPROMS,” in Symposium on VLSI Circuits Dig. Tech. Papers, pp. 20-21, June 1992. [15] G. J. Hemink et al., “Fast and accurate programming method for multilevel NAND flash EEPROM’s,” in Symposium on VLSI Technol. Dig. Tech. Papers, pp. 129–130, June 1995. [16] K. Hosono, T. Ikehashi, T. Tanaka, K. Imamiya, H. Nakamura, and K. Takeuchi, "Fail number detection circuit of FLASH memory," US Patent US 6507518 B2, 2003. [17] R. Micheloni, L. Crippa, and A. Marelli, "Inside NAND Flash Memories". [18] K. Takeuchi et ai., "A double-level-vth select gate array architecture for multi-level NAND flash memories." in Symposium on VLSI Ormits Dig. Tech. Papers, pp. 69-70, 1995. [19] Young-Bog Park et al., "Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a Flash EEPROM." Transactions on Electron Devices, pp. 1361-1368, Jun 1998. [20] T. Vali, V. Moschiano, and G. Santin, "Compensation of back pattern effect in a memory device," US 7936606B2, 2011. [21] D. Guiqiang, X. Ningde, and Z. Tong, "On the Use of Soft-Decision Error- Correction Codes in nand Flash Memory," Transactions on Circuits and Systems, vol. 58, pp. 429-439, 2011. [22] A. K. Mal and A. S. Dhar, "Modified Elmore delay model for VLSI interconnect," in Symposium on International Midwest Circuits and Systems (MWSCAS), IEEE, pp. 793-796, 2010. [23] G.J. Hemink, "Method of partial page fail bit detection in flash memory devices," US Patent US 7304893 B1, 2007. [24] C,H Lee et ai., "Non-volatile memory device having improved program speed and associated programming method," US Patent US 7352630 B2, 2008 [25] G.J. Hemink, "Partial page fail bit detection in flash memory devices," US Patent US 7355892 B2, 2008. [26] J.Y Jeong et ai., "Nonvolatile semiconductor memory device with fail bit detecting scheme and method for counting the number of fail bits" US Patent US 2002/0069381 A1, 2002 [27] N. Abiko, " semiconductor memory device and fail bit detection method in semiconductor memory device," US Patent US 2010/0195411 A1, 2010 [28] Semiconductor Memory(II) Course Slide from Prof. Riichiro Shirota, 2012 [29] Y.Li et ai., "128Gb 3b/cell NAND flash memory in 19nm technology with 18MB/s write rate and 400Mb/s toggle mode" in ISSCC Dig Tech Papers. pp. 436-437, 2012. [30] Shibata, N. et al., "A 19nm 112.8mm2 64Gb multi-level flash memory with 400Mb/s/pin 1.8V Toggle Mode interface" in ISSCC Dig Tech Papers. pp. 422-424 Feb. 2012. [31] Ik Joon Chang et al., "A 64Gb 533Mb/s DDR interface MLC NAND Flash in sub-20nm technology" in ISSCC Dig Tech Papers. pp. 430-432 Feb. 2012. [32] G. Haso et al., " A 128Gb 3b/cell NAND Flash Design Using 20nm Planar-Cell Technology" in ISSCC Dig Tech Papers. pp. 218-220 Feb. 2013. [33] K. Fukuda et al., "A 151-mm2 64- A 151-mm 2 64-Gb 2 Bit/Cell NAND Flash Memory in 24-nm CMOS Technology" in J. Solid-State Circuits, vol. 47, pp. 75-84, 2012. [34] C. Kanda et al., "A 19 nm 112.8 mm2 64 Gb Multi-Level Flash Memory With 400 Mbit/sec/pin 1.8 V Toggle Mode Interface" in J. Solid-State Circuits, vol. 48, pp. 159-166, 2013. [35] C. Kim et al., "A 21 nm High Performance 64 Gb MLC NAND Flash Memory With 400 MB/s Asynchronous Toggle DDR Interface" n J. Solid-State Circuits, vol. 47, pp. 981-989, 2012.
|