帳號:guest(3.146.176.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭耀仁
作者(外文):Kuo, Yao-Jen
論文名稱(中文):應用於三維反及快閃記憶體寫入驗證之波傳遞式錯誤位元偵測器
論文名稱(外文):Wave Propagation Fail Bit Detector for 3D BE-SONOS TFT NAND FLASH Memory Program Verification
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng-Fan Marvin
口試委員(中文):洪浩喬
邱瀝毅
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061559
出版年(民國):102
畢業學年度:101
語文別:英文中文
論文頁數:78
中文關鍵詞:快閃記憶體錯誤位元偵測器寫入驗證
外文關鍵詞:NAND Flash memoryFail Bit DetectorProgram verification
相關次數:
  • 推薦推薦:0
  • 點閱點閱:664
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這個大容量資料存取應用日趨廣泛的現今,反及快閃記憶體在半導體記憶體中的角色重要性日益重要。由於其擁有半導體記憶體中密度最高的元件面積最小的特性,反及快閃記憶體可以用最低的成本達到相當高的細胞密度,因此降低了製造成本,且相較於傳統硬碟,其擁有低耗能與高資料吞吐量的優點。
雖然反及快閃記憶體有各種優點,但是製成的微縮已經到達二十奈米,要在平面式反及快閃記憶體上增加元件密度變的日益困難,且成本也相對地增加。為了降低成本且讓元件密度有再進一步增加的可能,各種三維堆疊的方式被提出,目前被視為下一世代大容量資料存取應用的解決方案。
現階段三維反及快閃記憶體的製程尚未成熟,在晶片的製造與光罩蝕刻的過程中仍有許多困難需要克服,因此在元件細胞陣列中會有許多因製程產生的缺陷存在,三維電路之間的干擾也相當明顯,造成電路操作上錯誤率的提高。為了改善因為這些原因所造成寫入與寫入驗證上的錯誤與效率上的降低,高容忍位元數的錯誤更正碼被應用,不過也因此造成了傳統應用在寫入驗證的二位元搜尋式錯誤位元偵測器效率大幅降低。
於是我們於零點四微米的製程下設計了一個波傳遞式錯誤位元偵測器,可大幅降低寫入驗證端的錯誤位元偵測周期數,在六萬四千位元的頁面大小下可達到十三倍的周期改善。
Today, the application of the large data storage equipment has been widely used which lead to the increased importance of the NAND flash memory. With the smallest cell area in the planar semiconductor memory, NAND Flash memory can achieve high cell density and low cost.
Even though the NAND flash memory has a lot of benefits, the process shrinking has reduced to 20nm. It has become more difficult to increase the array density and the increasing of the cost is also unacceptable. To make the both applicable, many kinds of 3D NAND flash memory structure are proposed.
But the technology of the 3D NAND flash is not good enough that there are still many issues to conquer during the chip manufacturing and etching. It will cause many defect in the cell array. To improve to error and the efficient reduction due to these reason, the large ECC tolerance bit is applied. But this method also cause the program verification efficiency reduction due to the conventional Binary Search Fail Bit Detector.
To solve this problem, we propose the Wave Propagation Fail Bit Detector apply in 0.4um which can improve the program verification fail bit detecting operation cycle significantly. It cans reduce the operation cycles in 13 times to the conventional Binary Search Fail Bit Detector scheme in the 64k bit page size.
Contents
ABSTRACT (CHINESE) IV
ABSTRACT (ENGLISH) V
ACKNOWLEDGEMENTS (CHINESE) VI
LIST OF FIGURES X
LIST OF TABLES XIII
CHAPTER 1. INTRODUCTION 1
1.1 NAND FLASH MEMORY APPLICATION 1
1.2 CHALLENGE OF NAND FLASH MEMORY 4
1.3 OVERVIEW OF THE THESIS 7
CHAPTER 2. 3-DIMENSION VERTICAL GATE (3DVG) BE-SONOS TFT NAND FLASH MEMORY 8
2.1 BANDGAP ENGINEERED SONOS (BE-SONOS) MEMORY DEVICE 8
2.2 ARRAY ORGANIZATION 11
2.3 READ OPERATION 13
2.4 PROGRAM OPERATION 14
2.4.1 Program 14
2.4.2 Self-Boost Program Inhibit (SBPI) Technique 15
2.4.3 Program Verification Algorithm 17
2.4.4 Incremental Step Pulse Programming (ISPP) 19
2.5 ERASE OPERATION 20
2.5.1 Hole Tunneling Erase 20
2.5.2 Self-Boost Erase Inhibit Technique (SBEI) 21
2.5.3 Erase Verify Algorithm 22
CHAPTER 3. FAIL BIT DETECTION IN PROGRAM VERIFICATION 25
3.1 PAGE BUFFER STRUCTURE 25
3.2 FAIL BIT DETECTING STRUCTURE 28
3.3 THE CHALLENGE OF FBD IN 3D STRUCTURE AND 32
3.3.1 BL Coupling Noise 33
3.3.2 Source Line Noise 38
3.3.3 Layer by layer VTH requirement 39
3.3.4 Background Pattern Dependency (BPD) 40
3.4 THE ERROR CORRECTING CODE APPLICATION IN NAND FLASH 42
CHAPTER 4. CONVENTIONAL FAIL BIT DETECTOR 44
4.1 CURRENT TYPE FAIL BIT DETECTOR 44
4.2 BINARY SEARCH FAIL BIT DETECTOR 45
CHAPTER 5. PROPOSED FAIL BIT DETECTOR 50
5.1 THE IDEA OF WAVE-PROPAGATION FAIL BIT DETECTOR 50
5.2 THE CIRCUIT OF WAVE-PROPAGATION FAIL BIT DETECTOR 53
5.3 THE OPERATION OF THE WP-FBD 57
CHAPTER 6. ANALYSIS AND COMPARISONS 60
6.1 OPERATION CYCLES COMPARISON OF CONVENTIONAL BS-FBD AND PROPOSED WP-FBD 60
6.2 THE PROPAGATION DELAY ISSUE 62
6.3 RACING CONDITION ANALYSIS 65
6.4 THE OVERALL COMPARISON BETWEEN CONVENTIONAL AND PROPOSED SCHEME 67
CHAPTER 7. CHIP IMPLEMENTATION 68
7.1 TEST CHIP STRUCTURE 68
7.2 SIMULATION RESULT AND LAYOUT 69
CHAPTER 8. EXPERIMENTS AND CONCLUSION 71
8.1 EXPERIMENTS 71
8.2 CONCLUSIONS AND FUTURE WORK 73
REFERENCE 76
Reference

[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, "Introduction to flash memory," Proceedings of the IEEE, vol. 91, pp. 489-502, 2003.
[2] F. Masuoka, M. Momodomi, Y. Iwata and R. Shirota, "New ultra high density EPROM and flash EEPROM with NAND structure cell." International Electron Devices Meeting, pp. 552-555, 1987.
[3] M. Bauer et al., "A multilevel-cell 32 Mb flash memory, " in ISSCC Dig. Tech. Papers., pp. 132-133 Feb. 1995.
[4] H.Tanaka, "Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory," Symposium on VLSI Technology Digest of Technical Papers (VLSIT), pp. 14-15, 2007.
[5] M. White, “On the go with SONOS”, IEEE Circuits and Designs, pp.22-31, 2000.
[6] Ryota Katsumata et al., "Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices" Symposium on. VLSI Technology, pp. 136-137 June 2009.
[7] Jiyoung Kim Novel et al., "Vertical-Stacked-Array-Transistor (VSAT) for ultra- high-density and cost-effective NAND Flash memory devices and SSD (Solid State Drive)." VLSI Technology, Symposium on. pp. 186-187 June 2009.
[8] Jaehoon Jang et al., "Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra high density NAND flash memory." VLSI Technology, Symposium on. pp. 192-193 June 2009.
[9] Hang-Ting Lue et al., "BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability" Tech. Digest of International Electron Devices Meeting (IEDM), pp. 547-550, 2005.
[10] Hang-Ting Lue et al., "A Highly Scalable 8-Layer 3D Vertical-Gate (VG) TFT NAND Flash Using Junction-Free Buried Channel BE-SONOS Device" Tech. Digest of International Electron Devices Meeting (IEDM), pp. 131-132, 2010.
[11] R. Liu, "Reliability of Barrier Engineered Charge Trapping Devices for Sub-30nm NAND Flash," Tech. Digest of International Electron Devices Meeting (IEDM), pp. 745-748, 2009.
[12] Chun-Hsiung Hung et al., "3D Stackable Vertical-Gate BE-SONOS NAND Flash with Layer-Aware Program-and-Read Schemes and Wave-Propagation Fail-Bit-Detection against Cross-Layer Process Variations," Symposium on VLSI Circuits, pp. C20-C21, 2013.
[13] K.-D. Suh, "A 3.3 V 32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme," IEEE J. Solid-State Circuits, pp. 1149-1156, 1995.
[14] T. Tanaka et al., “A quick intelligent program architecture for 3 V only NAND-EEPROMS,” in Symposium on VLSI Circuits Dig. Tech. Papers, pp. 20-21, June 1992.
[15] G. J. Hemink et al., “Fast and accurate programming method for multilevel NAND flash EEPROM’s,” in Symposium on VLSI Technol. Dig. Tech. Papers, pp. 129–130, June 1995.
[16] K. Hosono, T. Ikehashi, T. Tanaka, K. Imamiya, H. Nakamura, and K. Takeuchi, "Fail number detection circuit of FLASH memory," US Patent US 6507518 B2, 2003.
[17] R. Micheloni, L. Crippa, and A. Marelli, "Inside NAND Flash Memories".
[18] K. Takeuchi et ai., "A double-level-vth select gate array architecture for multi-level NAND flash memories." in Symposium on VLSI Ormits Dig. Tech. Papers, pp. 69-70, 1995.
[19] Young-Bog Park et al., "Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a Flash EEPROM." Transactions on Electron Devices, pp. 1361-1368, Jun 1998.
[20] T. Vali, V. Moschiano, and G. Santin, "Compensation of back pattern effect in a memory device," US 7936606B2, 2011.
[21] D. Guiqiang, X. Ningde, and Z. Tong, "On the Use of Soft-Decision Error- Correction Codes in nand Flash Memory," Transactions on Circuits and Systems, vol. 58, pp. 429-439, 2011.
[22] A. K. Mal and A. S. Dhar, "Modified Elmore delay model for VLSI interconnect," in Symposium on International Midwest Circuits and Systems (MWSCAS), IEEE, pp. 793-796, 2010.
[23] G.J. Hemink, "Method of partial page fail bit detection in flash memory devices," US Patent US 7304893 B1, 2007.
[24] C,H Lee et ai., "Non-volatile memory device having improved program speed and associated programming method," US Patent US 7352630 B2, 2008
[25] G.J. Hemink, "Partial page fail bit detection in flash memory devices," US Patent US 7355892 B2, 2008.
[26] J.Y Jeong et ai., "Nonvolatile semiconductor memory device with fail bit detecting scheme and method for counting the number of fail bits" US Patent US 2002/0069381 A1, 2002
[27] N. Abiko, " semiconductor memory device and fail bit detection method in semiconductor memory device," US Patent US 2010/0195411 A1, 2010
[28] Semiconductor Memory(II) Course Slide from Prof. Riichiro Shirota, 2012
[29] Y.Li et ai., "128Gb 3b/cell NAND flash memory in 19nm technology with 18MB/s write rate and 400Mb/s toggle mode" in ISSCC Dig Tech Papers. pp. 436-437, 2012.
[30] Shibata, N. et al., "A 19nm 112.8mm2 64Gb multi-level flash memory with 400Mb/s/pin 1.8V Toggle Mode interface" in ISSCC Dig Tech Papers. pp. 422-424 Feb. 2012.
[31] Ik Joon Chang et al., "A 64Gb 533Mb/s DDR interface MLC NAND Flash in sub-20nm technology" in ISSCC Dig Tech Papers. pp. 430-432 Feb. 2012.
[32] G. Haso et al., " A 128Gb 3b/cell NAND Flash Design Using 20nm Planar-Cell Technology" in ISSCC Dig Tech Papers. pp. 218-220 Feb. 2013.
[33] K. Fukuda et al., "A 151-mm2 64- A 151-mm 2 64-Gb 2 Bit/Cell NAND Flash Memory in 24-nm CMOS Technology" in J. Solid-State Circuits, vol. 47, pp. 75-84, 2012.
[34] C. Kanda et al., "A 19 nm 112.8 mm2 64 Gb Multi-Level Flash Memory With 400 Mbit/sec/pin 1.8 V Toggle Mode Interface" in J. Solid-State Circuits, vol. 48, pp. 159-166, 2013.
[35] C. Kim et al., "A 21 nm High Performance 64 Gb MLC NAND Flash Memory With 400 MB/s Asynchronous Toggle DDR Interface" n J. Solid-State Circuits, vol. 47, pp. 981-989, 2012.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *