帳號:guest(18.118.12.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹鈞傑
作者(外文):Chan, Chun-Chieh
論文名稱(中文):具診斷等級之行動健康照護平台
論文名稱(外文):A Diagnostic Grade Mobile Healthcare Platform
指導教授(中文):馬席彬
指導教授(外文):Ma, Hsi-Pin
口試委員(中文):何奕倫
黃柏鈞
蔡佩芸
林彥宏
馬席彬
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061535
出版年(民國):102
畢業學年度:101
語文別:英文中文
論文頁數:131
中文關鍵詞:遠距醫療行動照護雲端醫療心電圖醫療診斷
外文關鍵詞:Mobile HealthcareTelecareECGDiagnostic Grade
相關次數:
  • 推薦推薦:0
  • 點閱點閱:199
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
具診斷等級之行動健康照護平台,旨在為現代人建立一個便利的遠距照護環境。雖然行動醫療已不是一個創新的研究課題,但是新興的穿戴感測技術和時下普及的行動設備卻可以使這樣的系統變得比以前更加完善且強大。此外,醫生和工程師之間,跨領域的合作更是另一項使這些研究在過去幾年變得更加完善的推動力。
在我們的平台上,我們利用自行開發的心電圖記錄原型模組來記錄用戶的單導極(Ⅱ導極)心電圖信號。原型的整體重量約35克(包含一顆850毫安時的充電鋰電池),且大小只有一般信用卡的一半。我們所開發的智慧手機應用程式擁有良好且人性化的使用者介面,它可以讓我們利用現今廣泛流行的行動裝置做為整體平台的中繼站,協調可穿戴式量測器和雲端伺服器之間的溝通與資料傳遞。由於當今手機的計算能力以及可程式化特性,我們所提供的手機應用程式不僅僅可以將所記錄的數據轉送到醫療雲,也可以為用戶們提供一些具有價值的服務和功能。這正是我們平台的主要值之一。
雖然我們的原型模組和應用程式可以提供許多功能,但它仍然擁有令人稱羨的低功耗特性。對於無線量測的原型來說,一顆850毫安時的電池可以讓它連續地記錄並傳送數據至少24小時(整個傳感器的總功耗約為145毫瓦,而其中約110毫瓦的功耗則是來自於所使用的藍芽2.1模組。當我們更換為4.0版本的藍芽低功耗(BLE)模組後,整體系統將會擁有更低的功耗)。對於手機應用軟體來說,我們對程式中所有的服務線程都進行了最佳化的工作,以為手機帶來最長的電池壽命。根據我們的實驗,一支帶有1800毫安時電池的四核心Android手機可以在執行我們的程式時擁有至少6.5小時的電池壽命。除此之外,高端的硬體規格在我們所設計的軟體上並非必要。一支具有800 MHz單核心處理器的Android手機就足以非常流暢的運行我們所設計的應用程式。
雲端醫療是我們平台的另一主要價值。這樣的雲端服務不僅可以提供準確的檢測方法,而且還提供先進生物醫學信號處理的分析技術。在我們的平台中,我們設計了一個精確的演算法來檢測所記錄到的單導極心電圖信號。經過MIT-BIH心律不整數據庫的驗證,我們的演算法具有著強大的效能。靈敏度(Se%)和預測能力(+P%)分別可以達到98.80%和99.19%。如果我們忽略MIT-BIH數據庫中極端的幾種情況:108,203,222,檢測結果將會高達99.45%和99.42%。除此之外,許多其他心電圖的分析方法也在我們的平台上被執行。而所有這些方法都已在不同的心臟分析研究中被證明是具有意義的。
我們同時也利用所實現的分析方法和時頻分析技術進行了另一個創新研究。我們希望能找出非酒精性脂肪肝(NAFLD)患者和正常人之間,心率變異性(HRV)指標的顯著差異。這可以幫助我們確定人體的肝臟和心臟之間是否有一些相互影響。果然,此一研究結果表明,非酒精性脂肪肝與ln sdNN的減少以及0V百分比的增加有關。因此我們認為,透過HRV參數對自主神經功能紊亂做進一步的風險分層對於NAFLD患者是必要的。
In this thesis, a diagnostic grade mobile healthcare platform is designed to establish a mobile telecare environment for modem people. Although mHealth is not an innovative research topic, the improvements of wearable sensing technologies and today’s mobile devices can make such systems become more consummate and powerful than before. Additionally, the cooperation between physicians and engineers is another main driving force for these researches to become even more consummate in the past few years.

In our platform, a wearable ECG recording prototype is developed to record single-lead (lead II) ECG signals of users. The whole prototype weight about 35 g (including an 850 mAh battery), and is only half of a credit card in size. With our well-developed and user-friendly smartphone application program, we can use a widespread mobile device as a hub to coordinate connections between wearable sensors and cloud techniques. Due to the computing power and the programability of today’s mobile phone, our hub can not only transmit recorded data onto medical cloud, but also provide several useful services and functions for users. This also is one of the main values of our platform.

Although our prototype and application can provide such many functions, it is still amazingly energy efficient. For the sensor node prototype, an 850 mAh battery can make such device continuously recording and transmitting data for at least 24 hours (the total power consumption of the whole sensor is about 145 mW, while about 110 mW for the wireless bluetooth 2.1 module only). This is expected to be much longer after replacing the bluetooth module with the 4.0 Bluetooth low energy (BLE) version. For the mobile application, all service threads of the program are optimized to bring longest battery life to mobile devices. However, the actuarial battery life of the mobile hub depends on the specification of different devices. Generally, a quad-core Android phone with a 1800 mAh battery can have at least 6.5 hours battery life according to our experiments. Besides of this, high-end hardware is not required at our mobile hub. A general Android phone with 800 MHz single core CPU can run our program smoothly as well.

Besides of the mobile hub, the patient-centric medical cloud is another priceless part of our mobile healthcare platform. Such cloud service can provide not only accurate detecting algorithms, but also advanced analyzing methods for biomedical signal processing. We designed an accurate algorithm to detect R-R intervals of recorded single-lead ECG signals using different operation method (DOM). Also, this algorithm is verified with MIT-BIH arrhythmia database, and the results show our algorithm has great performance. The sensitivity (Se%) and positive predictivity (+P%) of our DOM algorithm can achieve 98.80% and 99.19%, respectively. And if we ignore 3 worst cases of MIT-BIH database: 108, 203, 222, as many other researches do, we can even higher the value to 99.45% and 99.42%. In addition to this, many other ECG analyzing methods are also implemented in our platform. All of these methods were proved to be useful in different cardiac analysis.

We also use the implemented analyzing methods and some time-frequency analysis methods in another innovative study. In this study, we intend to find the significant difference between heart rate variability (HRV) indices analyzed from non-alcoholic fatty liver decease (NAFLD) patients and normal people. This can help us define the influence of liver on heart in human body. Expectedly, results of this study shows that, NAFLD is associated with decreased ln sdNN and increased 0V percentage. Therefore, we declare that, further risk stratification of autonomic dysfunction with falls or cardiovascular diseases by these HRV parameters is required in patients with NAFLD.
Abstract i
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Telecare [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Heart Failure [2] [3] . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 A General Framework of Telecare Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Telecare Platform Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Biomedical Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Electrocardiography [4] [5] [6] . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Electroencephalography [6] [7] . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Other Biomedical Signals [6] [7] . . . . . . . . . . . . . . . . . . . . 14
2.3 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Proposed Mobile Healthcare System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Wireless Sensor Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Front-End Analog Circuits . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Arduino Fio (ADC and Microprocessor) . . . . . . . . . . . . . . . . 29
3.1.3 Bluetooth UART Module . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.4 Printed Circuit Board (PCB) . . . . . . . . . . . . . . . . . . . . . . 32
3.1.5 Finished Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Mobile Hub (E-Care Application) . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Basic Procedures in the Android Application . . . . . . . . . . . . . 35
3.2.2 Pipeline Throughput Optimization . . . . . . . . . . . . . . . . . . . 36
3.2.3 Beat (Peak) Detecting and Heart Rate Counting . . . . . . . . . . . . 39
3.2.4 Merged with Dropbox API . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.5 Customized Server API and HTTP POST . . . . . . . . . . . . . . . 46
3.2.6 Other Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Medical Cloud Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 Environment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Accurate Algorithms and Advanced Analysis . . . . . . . . . . . . . 51
3.3.3 Other Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Implementation and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 Sensor Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.3 Medical Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4 Biomedical Signal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Analyzing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.1 R-R Interval Detection . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2 Heart Rate Variability (HRV) Analysis [5] . . . . . . . . . . . . . . . 64
4.1.3 Multi-Scale Entropy Analysis (MSE) . . . . . . . . . . . . . . . . . 68
4.1.4 Symbolic Dynamic Analysis (SD) . . . . . . . . . . . . . . . . . . . 72
4.1.5 De-trended Fluctuation Analysis (DFA) . . . . . . . . . . . . . . . . 75
4.1.6 Poincar´e Plot Analysis (PPA) . . . . . . . . . . . . . . . . . . . . . 79
4.1.7 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . 80
4.1.8 EEG Time-Frequency Analysis (TFA) . . . . . . . . . . . . . . . . . 84
4.2 R-R Interval Detection Implementation and MIT-BIH Database Verification . 874.2.1 MIT-BIH Arrhythmia Database [8] . . . . . . . . . . . . . . . . . . 87
4.2.2 Verification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Non-Alcoholic Fatty Liver Disease Analysis and Influence of Liver on Heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Patients with Non-Alcoholic Fatty Liver Disease . . . . . . . . . . . 94
4.3.2 HRV Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5 Future Prospects and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A Verification Results of the R-R Interval Detection Algorithm by All Cases of MITBIH Arrhythmia Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B Influence of Liver on Heart: Clinical Characteristics of Participants and The Correlation Between Biochemical Characteristics and HRV Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
[1] J. Tan, Advancing technologies and intelligence in healthcare and clinical environments,
1st ed. Hershey, PA, USA:Medical Information Science Reference/IGI Global,
June 2012.
[2] J. E. Hall, Guyton and Hall textbook of medical physiology, 12nd ed. Philadelphia,
PA, USA: Saunders/Elsevier, June 2010.
[3] R. R. Watson and V. R. Preedy, Bioactive Food as Dietary Interventions for Cardiovascular
Disease, 1st ed. San Diego, CA, USA: Academic Press/Elsevier, October
2012.
[4] J. Loscalzo, Harrison’s Cardiovascular Medicine, 1st ed. New York, NY, USA:
McGraw-Hill Prof Med/Tech, May 2010.
[5] G. D. Clifford, F. Azuaje, and P. McSharry, Advanced Methods And Tools for ECG
Data Analysis, 1st ed. Norwood, MA, USA: Artech House Inc., September 2006.
[6] R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach, 1st ed. Piscataway,
NJ, USA: Wiley-IEEE Press, December 2001.
[7] P. Dayan and L.F.Abbottl, Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems, 1st ed. Cambridge, MA, USA: MIT Press/Elsevier,
September 2005.
[8] National Institute of Biomedical Imaging and Bioengineering. (2012, January) MITBIH
arrhythmia database. [Online]. Available: http://www.physionet.org/physiobank/
database/mitdb/
[9] D. Simunic, S. Tomac, and I. Vrdoljak, “Wireless ECG monitoring system,” in IEEE
International Conference on Wireless Communication, Vehicular Technology, Information
Theory and Aerospace Electronic Systems Technology (Wireless VITAE), Aalborg,
Denmark, May 2009, pp. 73–76.
[10] R. Fensli, E. Gunnarson, and O. Hejlesen, “A wireless ECG system for continuous
event recording and communication to a clinical alarm station,” in IEEE International
Conference of the Engineering in Medicine and Biology Society (EMBS), vol. 1, San
Francisco, CA, USA, September 2004, pp. 2208–2211.
[11] J. Justesen and S. Madsen, “Wearable wireless ECG monitoring hardware prototype for
use in patients own home,” in IEEE International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth), London, UK, April 2009, pp. 1–3.
[12] Y.-Y. ChenWu, H.-P. Ma, C. Biswas, and D. Markovic, “Universal architecture prototype
for patient-centric medical environment,” in IEEE International Symposium on
VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, April 2012, pp. 1–4.
[13] C.-H. Chen, W.-T. Huang, Y.-Y. Chen, and Y.-J. Chang, “An integrated service model
for telecare system,” in IEEE Asia-Pacific Services Computing Conference (APSCC),
Yilan, Taiwan, December 2008, pp. 712–717.
[14] European Society of Cardiology. (2013, May) ESC National Cardiac Societies.
[Online]. Available: http://www.escardio.org/membership/national-societies/Pages/
welcome.aspx
[15] C. V. Mieghem, M. Sabbe, and D. Knockaert, “The clinical value of the ECG in noncardiac
conditions,” Chest Journal, vol. 125, no. 4, pp. 1561–1576, April 2004.
[16] E. Niedermeyer and F. da Silva, Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields, 5th ed. Philadelphia, PA, USA: LippincottWilliams
& Wilkins, November 2004.
[17] W. H. Benno M. Nigg, Biomechanics of the Musculo-skeletal System, 3rd ed. Hoboken,
NJ, USA: Wiley, January 2007.
[18] National Institutes of Health. (2013, January) Electroretinography. [Online]. Available:
http://www.nlm.nih.gov/medlineplus/ency/article/003388.htm
[19] M. Brown, M. Marmor, Vaegan, E. Zrenner, M. Brigell, and M. Bach, “ISCEV standard
for clinical electrooculography (EOG) 2006,” Documenta Ophthalmologica, vol. 113,
no. 3, pp. 205–212, 2006.
[20] M. W. Barnett and P. M. Larkman, “The action potential,” Practical Neurology, vol. 7,
no. 3, pp. 192–197, June 2007.
[21] A. D. Legatt, J. Arezzo, and H. G. V. Jr., “Averaged multiple unit activity as an estimate
of phasic changes in local neuronal activity: effects of volume-conducted potentials,”
Journal of Neuroscience Methods, vol. 2, no. 2, pp. 203 – 217, April 1980.
[22] C.-C. Chan, W.-C. Chou, C.-W. Chen, Y.-L. Ho, Y.-H. Lin, and H.-P. Ma, “Energy
efficient diagnostic grade mobile ECG monitoring,” in IEEE International New Circuits
and Systems Conference (NEWCAS), Montreal, Canada, June 2012, pp. 153–156.
[23] C.-C. Chan, C.-W. Chen, W.-C. Chou, Y.-L. Ho, Y.-H. Lin, and H.-P. Ma, “Live
demonstration: A mobile ECG healthcare platform,” in IEEE International Biomedical
Circuits and Systems Conference (BioCAS), Hsinchu, Taiwan, November 2012,
p. 87.
[24] P. Jing, H. Dan, and J. Qiyun, “Optimal design on twin-t notch filter in electromagnetic
exploration equipments,” in IEEE International Conference on Electric Information
and Control Engineering (ICEICE), Wuhan, China, April 2011, pp. 1510–1515.
[25] Arduino. (2013, March) Arduino.cc. [Online]. Available: http://arduino.cc/en/Main/
ArduinoBoardFio
[26] Android 4.2, Google Inc. (2013, March) Surfaceview. [Online]. Available:
http://developer.android.com/reference/android/view/SurfaceView.html
[27] Dropbox Inc. (2013, May) Dropbox tour. [Online]. Available: https://www.dropbox.
com/tour
[28] Android 4.2, Google Inc. (2013, March) Intent. [Online]. Available: http:
//developer.android.com/reference/android/content/Intent.html
[29] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,
RFC 2616: Hypertext Transfer Protocol – HTTP/1.1, The Internet Society, June 1999.
[30] “IEEE standard for information technology–telecommunications and information exchange
between systems–local and metropolitan area networks–specific requirements
part 11: Wireless lan medium access control (MAC) and physical layer (PHY) specifications
amendment 10: Mesh networking,” IEEE Std 802.11s-2011 (Amendment to
IEEE Std 802.11-2007 as amended by IEEE 802.11k-2008, IEEE 802.11r-2008, IEEE
802.11y-2008, IEEE 802.11w-2009, IEEE 802.11n-2009, IEEE 802.11p-2010, IEEE
802.11z-2010, IEEE 802.11v-2011, and IEEE 802.11u-2011), pp. 1–372, 2011.
[31] H. Meyer. (2013, March) MAMP. [Online]. Available: http://www.mamp.info/en/
mamp/index.html
[32] I. Pavlov. (2013, March) 7z format. [Online]. Available: http://www.7-zip.org/7z.html
[33] Google Inc. (2013, May) Unique product identifiers. [Online]. Available: http:
//support.google.com/merchants/bin/answer.py?hl=en&answer=160161
[34] S. Udell, Beginning Google Maps Mashups with Mapplets, KML, and GeoRSS: From
Novice to Professional, 1st ed. Berkely, CA, USA: Apress Media, November 2008.
[35] M. Costa, A. L. Goldberger, and C.-K. K. Peng, “Multiscale entropy analysis of biological
signals.” Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 71,
no. 2 Pt 1, p. 021906, February 2005.
[36] M. Costa, A. Goldberger, and C.-K. Peng, “Multiscale Entropy Analysis of Complex
Physiologic Time Series,” Physical Review Letters, vol. 89, p. 068102, August 2002.
[37] Y.-L. Ho, C. Lin, Y.-H. Lin, and M.-T. Lo, “The prognostic value of non-linear analysis
of heart rate variability in patients with congestive heart failure - a pilot study of
multiscale entropy,” PLoS ONE, vol. 6, no. 4, p. e18699, April 2011.
[38] National Institute of Biomedical Imaging and Bioengineering. (2011, December)
Normal sinus rhythm R-R interval database. [Online]. Available: http://www.
physionet.org/physiobank/database/nsrdb/
[39] ——. (2011, December) Congestive heart failure R-R interval database. [Online].
Available: http://www.physionet.org/physiobank/database/chf2db/
[40] N. Wessel, U. Schwarz, P. Saparin, and J. Kurths, “Symbolic dynamics for medical
data analysis,” in Attractors, Signals, and Synergetics, W. Klonowski, Ed. Lengerich,
Germany: Pabst Science Publishers, January 2002.
[41] S. Guzzetti, E. Borroni, P. Garbelli, E. Ceriani, P. D. Bella, N. Montano, C. Cogliati,
V. Somers, A. Malliani, and A. Porta, “Symbolic dynamics of heart rate variability
: A probe to investigate cardiac autonomic modulation,” Circulation - Journal of the
American Heart Association, vol. 112, no. 4, pp. 465–470, July 2005.
[42] D. Cysarz, S. Lange, P. F. Matthiessen, and P. v. Leeuwen, “Regular heartbeat dynamics
are associated with cardiac health,” American Journal of Physiology - Regulatory, Integrative
and Comparative Physiology, vol. 292, no. 1, pp. R368–R372, January 2007.
[43] A. Voss, R. Schroeder, S. Truebner, M. Goernig, H. R. Figulla, and A. Schirdewan,
“Comparison of nonlinear methods symbolic dynamics, detrended fluctuation, and
poincar´e plot analysis in risk stratification in patients with dilated cardiomyopathy,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 17, p. 015120, March
2007.
[44] H. Malberg, R. Bauernschmitt, U. Meyerfeldt, A. Schirdewan, and N. Wessel, “Shortterm
heart rate turbulence analysis versus variability and baroreceptor sensitivity in
patients with dilated cardiomyopathy,” Indian Pacing and Electrophysiology Journal,
vol. 4, no. 4, pp. 162–175, October 2004.
[45] National Institutes of Health. (2012, August) Coronary heart disease. [Online].
Available: http://www.nhlbi.nih.gov/health/health-topics/topics/cad/
[46] R. Krishnam, H. Nazeran, S. Chatlapalli, E. Haltiwanger, and Y. Pamula, “Detrended
fluctuation analysis: A suitable long-term measure of HRV signals in children with
sleep disordered breathing,” in IEEE International Conference of the Engineering in
Medicine and Biology Society (EMBS), Shanghai, China, January 2006, pp. 1174–
1177.
[47] H. V. Huikuri and T. H. M˙akikallio, “Heart rate variability in ischemic heart disease,”
Autonomic Neuroscience: Basic and Clinical, vol. 90, no. 1-2, pp. 95–101, July 2001.
[48] C. K. Peng, S. Havlin, E. H. Stanley, and A. L. Goldberger, “Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 5, no. 1, pp. 82–87, November
1995.
[49] J. C. Echeverr´ıa, M. S.Woolfson, J. A. Crowe, B. R. Hayes-Gill, G. D. H. Croaker, and
H. Vyas, “Interpretation of heart rate variability via detrended fluctuation analysis and
filter,” Chaos, vol. 13, no. 2, pp. 467–475, June 2003.
[50] S. Kingsley and S. Quegan, Understanding Radar Systems, 1st ed. New York, NY,
USA: McGraw Hill, January 1998.
[51] P. Sarlak, A. Jafari, G. Attarodi, N. Dabanloo, S. Setarehdan, and N. Hemmati, “HRV
signal dynamic extraction in the poincare plot by analyzing the extended u-sequences
for cardiac arrhythmia classification,” in IEEE International Conference of Computing
in Cardiology (CinC), Krakow, Poland, September 2012, pp. 941–944.
[52] Y. Zhao, J. Zhao, and Q. Li, “Derivation of respiratory signals from single-lead ECG,”
in IEEE International Seminar on Future BioMedical Information Engineering (FBIE),
Wuhan, China, December 2008, pp. 15–18.
[53] P. Langley, E. Bowers, and A. Murray, “Principal component analysis as a tool for analyzing
beat-to-beat changes in ECG features: Application to ECG-derived respiration,”
IEEE Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 821–829, April 2010.
[54] I. Rivera, A. Ramirez, and D. Rodriguez, “A time-frequency signal analysis system for
power quality assessment,” in IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS), vol. 2, Covington, Kentucky, August 2005, pp. 1677–1680.
[55] Y. Shin, A. Parsons, E. Powers, and W. Grady, “Time-frequency analysis of power
system disturbance signals for power quality,” in IEEE Summer Meeting of Power Engineering
Society (PESS), vol. 1, Edmonton, Alberta, Canada, July 1999, pp. 402–407.
[56] T. PihlajamŁki, “Multi-resolution short-time fourier transform implementation of directional
audio coding,” Master’s thesis, Helsinki University of Technology, Helsinki,
Finland, August 2009.
[57] A. H. Nuttall, “Some windows with very good sidelobe behavior,” IEEE Transactions
on Acoustics, Speech and Signal Processing, vol. 29, no. 1, pp. 84–91, February 1981.
[58] A. Zabidi, W. Mansor, Y. K. Lee, and C. Che Wan Fadzal, “Short-time Fourier transform
analysis of EEG signal generated during imagined writing,” in IEEE International
Conference on System Engineering and Technology (ICSET), Bandung, Indonesia,
September 2012, pp. 1–4.
[59] N. Arzeno, Z.-D. Deng, and C.-S. Poon, “Analysis of first-derivative based QRS detection
algorithms,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, pp.
478–484, February 2008.
[60] S. Z. Mahmoodabadi, A. Ahmadian, M. D. Abolhasani, M. Eslami, and J. H. Bidgoli,
“ECG feature extraction based on multiresolution wavelet transform,” in IEEE
International Conference of the Engineering in Medicine and Biology Society (EMBS),
Shanghai, China, September 2005, pp. 3902–3905.
[61] Q. Chen, J. Liu, and G. Li, “QRS wave group detection based on B-spline wavelet and
adaptive threshold,” in IEEE International Conference on Computer, Mechatronics,
Control and Electronic Engineering (CMCE), vol. 6, Changchun, China, August 2010,
pp. 272–275.
[62] X. li Yang and J. tian Tang, “Hilbert-Huang transform and wavelet transform for ECG
detection,” in IEEE International Conference on Wireless Communications, Networking
and Mobile Computing (WiCOM), Dalian, China, September 2008, pp. 1–4.
[63] Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, “QRS detection based on
wavelet coefficients,” Comput. Methods Prog. Biomed., vol. 107, no. 3, pp. 490–496,
September 2012.
[64] P. ANGULO and K. D. LINDOR, “Non-alcoholic fatty liver disease,” Journal of Gastroenterology
and Hepatology, vol. 17, pp. S186–S190, February 2002.
[65] Y.-C. Liu, C.-S. Hung, Y.-W. Wu, Y.-C. Lee, Y.-H. Lin, C. Lin, M.-T. Lo, C.-C. Chan,
H.-P. Ma, Y.-L. Ho, and C.-H. Chen, “Influence of non-alcoholic fatty liver disease
on autonomic changes evaluated by the time domain, frequency domain, and symbolic
dynamics of heart rate variability,” PLoS ONE, vol. 8, no. 4, p. e61803, April 2013.
[66] R. Williams, “Global challenges in liver disease.” Hepatology, vol. 44, no. 3, pp. 521–
526, September 2006.
[67] G. Paolisso, D. Manzella, N. Montano, A. Gambardella, and M. Varricchio, “Plasma
leptin concentrations and cardiac autonomic nervous system in healthy subjects with
different body weights,” Journal of Clinical Endocrinology and Metabolism, vol. 85,
no. 5, pp. 1810–1814, May 2000.
[68] L. A. Adams, J. F. Lymp, J. S. Sauver, S. O. Sanderson, K. D. Lindor, A. Feldstein, and
P. Angulo, “The Natural History of Nonalcoholic Fatty Liver Disease: A Population-
Based Cohort Study,” Gastroenterology, vol. 129, no. 1, pp. 113–121, July 2005.
[69] X. Li, M. Xia, H. Ma, A. Hofman, Y. Hu, H. Yan, W. He, H. Lin, J. Jeekel, N. Zhao,
J. Gao, and X. Gao, “Liver fat content is associated with increased carotid atherosclerosis
in a chinese middle-aged and elderly population: The shanghai changfeng study,”
Atherosclerosis, vol. 224, no. 2, pp. 480–485, October 2012.
[70] G. Targher, C. P. Day, and E. Bonora, “Risk of cardiovascular disease in patients with
nonalcoholic fatty liver disease,” New England Journal of Medicine, vol. 363, no. 14,
pp. 1341–1350, September 2010.
[71] “Heart rate variability: standards of measurement, physiological interpretation and clinical
use. Task Force of the European Society of Cardiology and the North American
Society of Pacing and Electrophysiology.” Circulation - Journal of the American Heart
Association, vol. 93, no. 5, pp. 1043–1065, March 1996.
[72] G. C. Farrell, S. Chitturi, G. K. Lau, J. D. Sollano, and for the Asia-Pacific Working
Party on NAFLD, “Guidelines for the assessment and management of non-alcoholic
fatty liver disease in the Asia-Pacific region: Executive summary,” Journal of Gastroenterology
and Hepatology, vol. 22, no. 6, pp. 775–777, June 2007.
[73] N. Chalasani, Z. Younossi, J. E. Lavine, A. M. Diehl, E. M. Brunt, K. Cusi, M. Charlton,
and A. J. Sanyal, “The diagnosis and management of non-alcoholic fatty liver
disease: Practice guideline by the american association for the study of liver diseases,
american college of gastroenterology, and the american gastroenterological association,”
Hepatology, vol. 55, no. 6, pp. 2005–2023, June 2012.
[74] S. M. Grundy, J. I. Cleeman, S. R. Daniels, K. A. Donato, R. H. Eckel, B. A. Franklin,
D. J. Gordon, R. M. Krauss, P. J. Savage, S. C. Smith, J. A. Spertus, and F. Costa,
“Diagnosis and management of the metabolic syndrome: An american heart association/
national heart, lung, and blood institute scientific statement,” Circulation - Journal
of the American Heart Association, vol. 112, no. 17, pp. 2735–2752, October 2005.
[75] G. Marchesini, E. Bugianesi, G. Forlani, F. Cerrelli, M. Lenzi, R. Manini, S. Natale, E. Vanni, N. Villanova, N. Melchionda, and M. Rizzetto, “Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome,” Hepatology, vol. 37, no. 4, pp. 917–923, April 2003.
[76] K.-B. MIN, J.-Y. MIN, D. PAEK, and S.-I. CHO, “The impact of the components of metabolic syndrome on heart rate variability: Using the ncep-atp iii and idf definitions,” Pacing and Clinical Electrophysiology, vol. 31, no. 5, pp. 584–591, May 2008.
[77] D. Liao, M. Carnethon, G. W. Evans, W. E. Cascio, and G. Heiss, “Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes: The atherosclerosis risk in communities (ARIC) study,” Diabetes, vol. 51, no. 12, pp. 3524–3531, December 2002.
[78] N. Tentolouris, S. Liatis, and N. Katislambros, “Sympathetic system activity in obesity and metabolic syndrome,” Annals of the New York Academy of Sciences, vol. 1083, no. 1, pp. 129–152, November 2006.
[79] Y.-M. Leung and C.-Y. Kwan, “Dual vascular effects of leptin via endothelium: hypothesis and perspective.” Chin J Physiol, vol. 51, no. 1, pp. 1–6, February 2008.
[80] F. P., “Focus on leptin, a pleiotropic hormone.” Minerva Med, vol. 96, no. 1, pp. 65–75,
April 2005.
[81] J. Sierra-Johnson, A. Romero-Corral, F. Lopez-Jimenez, A. S. Gami, F. H. S. Kuniyoshi, R. Wolk, and V. K. Somers, “Relation of increased leptin concentrations to history of myocardial infarction and stroke in the united states population,” The American Journal of Cardiology, vol. 100, no. 2, pp. 234–239, October 2007.
[82] M. Singh, U. S. Bedi, P. P. Singh, R. Arora, and S. Khosla, “Leptin and the clinical cardiovascular risk,” International Journal of Cardiology, vol. 140, no. 3, pp. 266–271, November 2010.
[83] A. H. Berg and P. E. Scherer, “Adipose tissue, inflammation, and cardiovascular disease,” Circulation - Journal of the American Heart Association, vol. 96, no. 9, pp. 939–949, March 2005.
[84] M. P. Reilly, N. Iqbal, M. Schutta, M. L. Wolfe, M. Scally, A. R. Localio, D. J. Rader, and S. E. Kimmel, “Plasma leptin levels are associated with coronary atherosclerosis in type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 8, pp. 3872–3878, August 2004.
[85] M. Machado, J. Coutinho, F. Carepa, A. Costa, H. Proena, and H. Cortez-Pinto, “How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease.” Eur J Gastroenterol Hepatol, vol. 24, no. 10, pp.
1166–1172, October 2012.
[86] P. Nigam, S. P. Bhatt, A. Misra, M. Vaidya, J. Dasgupta, and D. S. Chadha, “Nonalcoholic fatty liver disease is closely associated with sub-clinical inflammation: A case-control study on asian indians in north india,” PLoS ONE, vol. 8, no. 1, p. e49286, January 2013.
[87] A. Sajadieh, O. W. Nielsen, V. Rasmussen, H. O. Hein, S. Abedini, and J. F. Hansen, “Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease,”
European Heart Journal, vol. 25, no. 5, pp. 363–370, March 2004.
[88] J. O. Valkama, H. V. Huikuri, J. Koistinen, S. Yli-Myry, K. J. Airaksinen, and R. J. Myerburg, “Relation between heart rate variability and spontaneous and induced ventricular arrhythmias in patients with coronary artery disease,” Journal of the American College of Cardiology, vol. 25, no. 2, pp. 437–443, February 1995.
[89] M. P. Tulppo, T. H. MŁkikallio, T. SeppŁnen, J. K. E. Airaksinen, and H. V. Huikuri, “Heart rate dynamics during accentuated sympathovagal interaction,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 274, no. 3, pp. H810–H816, March 1998.
[90] V. Shusterman, B. Aysin, V. Gottipaty, R. Weiss, S. Brode, D. Schwartzman, and K. P. Anderson, “Autonomic nervous system activity and the spontaneous initiation of ventricular tachycardia,” Journal of the American College of Cardiology, vol. 32, no. 7, pp. 1891–1899, December 1998.
[91] E. Pruvot, G. Thonet, J.-M. Vesin, G. van Melle, K. Seidl, H. Schmidinger, J. Brachmann, W. Jung, E. Hoffmann, R. Tavernier, M. Block, A. Podczeck, and M. Fromer, “Heart rate dynamics at the onset of ventricular tachyarrhythmias as retrieved from implantable cardioverter-defibrillators in patients with coronary artery disease,” Circulation - Journal of the American Heart Association, vol. 101, no. 20, pp. 2398–2404, May 2000.
[92] N. JL., “Systemic symptoms in non-alcoholic fatty liver disease,” Dig Dis, vol. 28, no. 1, pp. 214–219, May 2010.
[93] J. M. Dekker, E. G. Schouten, P. Klootwijk, J. Pool, C. A. Swenne, and D. Kromhout, “Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men: The zutphen study,” American Journal of Epidemiology, vol. 145, no. 10, pp. 899–908, May 1997.
[94] J. M. Dekker, R. S. Crow, A. R. Folsom, P. J. Hannan, D. Liao, C. A. Swenne, and E. G. Schouten, “Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The ARIC study,” Circulation - Journal of the American Heart Association, vol. 102, no. 11, pp. 1239–1244, September 2000.
[95] U. Meyerfeldt, N. Wessel, H. Schtt, D. Selbig, A. Schumann, A. Voss, J. Kurths, C. Ziehmann, R. Dietz, and A. Schirdewan, “Heart rate variability before the onset of ventricular tachycardia: differences between slow and fast arrhythmias,” International Journal of Cardiology, vol. 84, no. 2-3, pp. 141–151, August 2002.
[96] D. Liao, J. Cai, W. D. Rosamond, R. W. Barnes, R. G. Hutchinson, E. A. Whitsel, P. Rautaharju, and G. Heiss, “Cardiac autonomic function and incident coronary heart disease: A population-based case-cohort study: The ARIC study,” American Journal of Epidemiology, vol. 145, no. 8, pp. 696–706, April 1997.
[97] H. Tsuji, M. G. Larson, F. J. Venditti, E. S. Manders, J. C. Evans, C. L. Feldman, and D. Levy, “Impact of reduced heart rate variability on risk for cardiac events: The framingham heart study,” Circulation - Journal of the American Heart Association, vol. 94, no. 11, pp. 2850–2855, December 1996.
[98] T. Dogru, H. Genc, S. Tapan, C. N. Ercin, F. Ors, F. Aslan, M. Kara, E. Sertoglu, S. Bagci, smail Kurt, and A. Sonmez, “Elevated asymmetric dimethylarginine in plasma: An early marker for endothelial dysfunction in non-alcoholic fatty liver disease?” Diabetes Research and Clinical Practice, vol. 96, no. 1, pp. 47–52, April 2012.
[99] G. Li Volti, S. Salomone, V. Sorrenti, A. Mangiameli, V. Urso, I. Siarkos, F. Galvano, and F. Salamone, “Effect of silibinin on endothelial dysfunction and ADMA levels in obese diabetic mice,” Cardiovascular Diabetology, vol. 10, no. 1, p. 62, July 2011.
[100] R. A. Augustyniak, R. G. Victor, D. A. Morgan, andW. Zhang, “l-NAME and ADMAinduced sympathetic neural activation in conscious rats,” American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol. 290, no. 3, pp. R726– R732, March 2006.
[101] National Institutes of Health. (2012, February) Coronary angioplasty. [Online]. Available: http://www.nhlbi.nih.gov/health/health-topics/topics/angioplasty/
[102] ——. (2011, November) Stent. [Online]. Available: http://www.nhlbi.nih.gov/health/ health-topics/topics/stents/
[103] D. Mukherjee, E. R. Bates, M. Roffi, and D. J. Moliterno, Cardiovascular Catheterization and Intervention, 1st ed. London, UK: Informa Healthcare, August 2010.
[104] National Institutes of Health. (2012, March) Coronary angiography. [Online]. Available: http://www.nhlbi.nih.gov/health/health-topics/topics/ca/
[105] M. Costa, I. Cygankiewicz,W. Zareba, A. de Luna, A. Goldberger, and S. Lobodzinski, “Multiscale complexity analysis of heart rate dynamics in heart failure: Preliminary findings from the music study,” in IEEE International Conference of Computing in Cardiology (CinC), Madison, NJ, USA, September 2006, pp. 101–103.
[106] H.-K. Yuan, C. Lin, P.-H. Tsai, F.-C. Chang, K.-P. Lin, H.-H. Hu, M.-C. Su, and M.-T. Lo, “Acute increase of complexity in the neurocardiovascular dynamics following carotid stenting,” Acta Neurologica Scandinavica, vol. 123, no. 3, pp. 187–192, March 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *