帳號:guest(18.118.19.189)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林玉茹
作者(外文):Lin, Yu-Ju
論文名稱(中文):超音波鈣化點對比增強成像技術
論文名稱(外文):Calcification Contrast Enhanced Ultrasound Imaging Technique
指導教授(中文):李夢麟
指導教授(外文):Li, Meng-Lin
口試委員(中文):鐘太郎
翁詠祿
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061518
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:87
中文關鍵詞:鈣化點乳癌超音波
相關次數:
  • 推薦推薦:0
  • 點閱點閱:507
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
本研究中提出三項影像處理技術,分別利用鈣化點於超音波訊號及影像上的特徵來增強鈣化點在超音波影像上的對比。首先從訊號上的觀點來看,基於鈣化點與正常組織於頻域上的差異特徵,分別在兩個中心頻率下進行造影,第一種成像技術為利用帶通濾波器之對比成像方法,對時域訊號處理並成像,以及第二種利用短時距傅立葉轉換之對比成像方法,對頻域訊號處理並成像。從影像上的觀點,計算斑點雜訊的變異數與平均值的比值,提出第三種依據斑點雜訊因子之成像方法,計算斑點雜訊的變異數與平均值的比值,來從影像中偵測鈣化點並加強對比。
在模擬中驗證此三種技術之可行性,以及比較不同參數之影響及成像結果。第一項方法中,帶通濾波器需探討最佳頻率組合及頻寬的影響,但因對比度不夠,幾乎所有情況皆難以判斷鈣化點的位置;第二項方法,也需探討最佳頻率組合及平移視窗大小之影響,鈣化點在其中三組頻率組合有較佳的對比,但並沒有大於原始影像,對比度仍待改善。第三項方法,需探討平移視窗大小之影響,得到的斑點雜訊因子之影像結果對比最好,能夠準確的偵測鈣化點且影響品質極佳,但有其他非鈣化點的亮點也會被增強,有誤判的疑慮。
因此三項成像技術都有要改善的空間,若能解決訊號比對上的偏差問題,有機會可以增強帶通濾波器成像方法的對比。短時距傅立葉轉換成像方法的對比也需加強,若能與斑點雜訊因子之方法結合,有機會在增強對比的同時,並驗證影像中出現的亮點,有哪些真實為鈣化點,而非其他強散射之組織,藉以增強判讀的準確性。
Calcifications are important indicators of breast cancer. Since there is speckle noise in ultrasound images, it is difficult to detect calcifications from breast gland and fat. In this study, we propose three calcification contrast enhanced ultrasound imaging techniques to improve the contrast of calcifications to other tissues in ultrasound images. From signal view, we utilized the signal characteristics of calcifications in frequency domain, since there is more enormous variation of back scattering magnitude of calcifications than that of other tissues in breast in signal spectrum. We used band pass filter (BPF, method 1) and short-time Fouier transform (STFT, method 2) to enhance contrast of calcifications. From image view, we used speckle factor (SF) imaging to enhance the calcification contrast (method 3).
Simulations were performed to verify our idea. We used the Faran model to predict the complex amplitude of echoes from calcifications. We compare amplitudes of calcifications and other tissues between different center frequencies, which represents the contrast. Several frequency are chosen then to enhance the contrast of calcifications to other tissues. The selected frequency sets are employed to design band pass filter and apply short-time Fourier transform for contrast enhanced imaging. In addition, different bandwidth, sliding window size and the size of calcifications are simulated to optimize the contrast.
Furthermore, calcifications manifest as isolated strong scatterers in the scattering volume, so the variance become large when we calculate the variance of intensity in a small window. Speckle factor which is defined as the standard deviation divided by the mean of each window is used to form images where the contrast of calcifications is enhanced. The calcifications can be identified via the binary images obtained from the speckle factor images.
The best results of the three methods are obtained by speckle factor images. Since the binary images are derived from the speckle factor, the background is clear and the image contrast is the best and all the calcifications of different sizes could be detected precisely. There are more problems to solve in the other two methods. If we modify the signal mapping when using band pass filter and try to enhance the contrast in the method using short-time Fourier transform, the image quality and contrast of calcifications would be improved.
摘要 I
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 乳癌與鈣化點之關係 1
1.2 現有之乳房影像系統 3
1.2.1 X光乳房攝影 3
1.2.2 乳房超音波 5
1.3 研究動機與目的 6
第二章 鈣化點對比增強成像技術 8
2.1 基於鈣化點訊號特徵之對比增強技術 8
2.1.1 利用Faran 模型的訊號模擬 9
2.1.2 中心頻率的選擇 11
2.1.3 帶通濾波器(Band Pass Filter)之對比成像方法 15
2.1.4 短時距傅立葉轉換(Short-time Fourier Transform)之對比成像方法 20
2.2 基於鈣化點影像特徵之對比增強技術 22
2.2.1 斑點雜訊的統計分析 23
2.2.2 斑點雜訊因子(Speckle Factor) 之成像方法 23
2.2.3 平移視窗大小之影響 24
第三章 研究結果與討論 26
3.1 鈣化點之訊號模擬 26
3.2 對比增強結果與討論 27
3.2.1 帶通濾波器之對比成像結果 28
3.2.2 短時距傅立葉轉換之對比成像結果 38
3.2.3 斑點雜訊因子之成像結果 54
第四章 結論與未來工作 81
4.1 結論 81
4.2 未來工作 82
[1]行政院衛生署, 99 年死因統計分析, pp. 13–17, 2010
[2]東元綜合醫院http://tyh.com.tw/se_cancer_b.html
[3] M. P. Morgan, M. M. Cooke, G. M. McCarthy, “ Microcalcifications Associated with Breast Cancer : An Epiphenomenon or Biologically Significant Feature of Selected Tumors ?,” J. Mammary Gland. Biol. Neoplasia. vol. 10, pp. 181–187 , 2005
[4]乳癌防治基金會http://www.breastcf.org.tw/index.php/knowledge-base/symptoms
[5] E. A. Sickles, “Mammography features of ‘early’ breast cancer,” American Journal of Roentgenology, vol. 143, pp. 461-464, 1984
[6] A. Fandos-Morera, M. Prats-Esteve, J. Tura-Soteras, and A. Traveria-Cros, “Breast tumors: Composition of microcalcifications,” Radiology, vol. 169, pp. 325-327, 1988
[7] L. Frappart, M. Boudeulle, J. Boumendil, H. Chi Lin, I. Martinon, C. Palayer, Y. Mallet-Guy, D. Raudrant, A. Bremond, Y. Rochet, and J. Feroldi, “Structure and composition of microcalcifications in benign and malignant lesions of the breast,” Hum. Pathol., vol. 15, pp. 880-889, 1984
[8] A. Evans, S. Pinder, R. Wilson, I. Ellis, “Breast Calcification : A Diagnostic Manual”
[9]蔡明芳, 鍾瑞容, 莊茂德, “乳房檢查報告的判讀─簡介BI-RADS,” 基層醫學. vol. 23, pp. 384–386, 2008
[10] W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe,“Diagnostic Accuracy of Mammography, Clinical Examination, US, and MR Imaging in Preoperative Assessment of Breast Cancer,” Radiology, vol.233, pp. 830-849, 2004
[11] Muttarak M, Kongmebhol P, Sukhamwang N, “ Breast calcifications: which are malignant?,” Singapore Med. J., vol. 50, pp. 907-914, 2009
[12]優活健康網http://www.uho.com.tw/hotnews.asp?aid=11626
[13]乳房健康及乳癌知識衛教網http://www.mdesign.tw/display/breast/qa.php?xid=4
[14]馬偕乳癌有愛關懷聯誼會http://mmh2695.pixnet.net/blog/post/809464-%E5%A6%82%E4%BD%95%E9%81%B8%E6%93%87%E5%8F%96%E5%BE%97%E7%B4%B0%E8%83%9E%E6%88%96%E7%B5%84%E7%B9%94%E7%9A%84%E6%96%B9%E6%B3%95%E4%BB%A5%E8%A8%BA%E6%96%B7%E4%B9%B3%E7%99%8C
[15] J. J. Faran, “Sound scattering by solid cylinders and spheres,” J. Acoust. Soc. Amer., vol. 23, pp. 405-418, 1951.
[16] R. Hickling, “Analysis of echoes from a solid elastic sphere in water,” J. Acoust. Soc. Amer., vol. 34, pp. 1582-1592, 1962
[17] M. E. Anderson, M. S. Soo, F. E. Trahey, “Microcalcifications as Elastic Scatterers Under Ultrasound,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr. vol. 45, pp. 925-934, 1998
[18] A. R. Selfridge, “Approximate Material Properties in Isotropic Materials,” IEEE Trans. Sonic Ultrason., vol. SU-32, pp. 381-394, 1985
[19] D. E. Grenoble, “The Elastic Properties of Hard Tissues and Apatites,” J. Biomed. Mater. Res., vol. 6, pp. 221-233, 1972
[20] A. J. Rudgers, “Acoustic pulses scattered by a rigid sphere immersed in a fluid,” J. Acoust. Soc. Amer., vol. 45, pp. 900-910, 1969
[21] S. L. Wang , P. C. Li, “MVDR-Based Coherence Weighting for High-Frame-Rate Adaptive Imaging,” IEEE Trans. Ultrasonic Ferroelectr. Freq. Contr., vol. 56, pp. 2097–2110, 2009
[22] http://home.ee.ntu.edu.tw/belab/course_files/04_imaging/speckle.doc
[23] J.W. Goodman, “Statistical Optics,” Wiley-Interscience, p. 567, 1985
[24] P. M. Shankar, “A Statistical Model for the Ultrasonic Backscattered Echo Tissue Containing Microcalcifications,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 60, pp. 932-942, 2013
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *