帳號:guest(3.21.21.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭兆涵
作者(外文):Cheng, Chao-Han
論文名稱(中文):具多輔助充電源之多功能蓄電池儲能系統
論文名稱(外文):A multi-functional battery energy storage system with multiple auxiliary charging sources
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):廖聰明
李建興
謝欣然
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061509
出版年(民國):102
畢業學年度:101
語文別:中文英文
論文頁數:215
中文關鍵詞:蓄電池儲能系統微電網變頻器切換式整流器共振式轉 換器交錯式連網操控獨立操控
外文關鍵詞:BESSpower conditioning controlmicro-gridinverterswitch-mode rectifierresonant converterinterleavinggrid-connected operationautonomous operation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:747
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
本論文旨在開發一具多輔助充電源之多功能蓄電池儲能系統,並從事其操控。所建蓄電池儲能系統之400V直流鏈係由96V蓄電池經含兩單元之一雙向交錯式直流/直流轉換器升壓調控建立之,此交錯式轉換器之電流控制只需要一個電流感測器。經由適當的控制,所建構三相雙向變頻器可產生60Hz/220V之交流電壓輸出,並具有高彈性之功率調控能力。所建蓄電池儲能系統具下列功能:(1) 獨立操控模式:所有區域負載均由蓄電池儲能系統供電,具有良好之波形品質。(2) 連網操控模式:蓄電池儲能系統藉由同步程序連接至傳統電網,可執行以下三種操作模式:(i) 浮接模式:傳統電網只提供實功率給區域負載,所有負載之虛功率及諧波功率由蓄電池儲能系統補償;(ii) 放電模式 (或電池至電網模式):蓄電池儲能系統供電區域負載,並可回送規劃之功率至傳統電網;(iii) 充電模式 (或電網至電池模式):傳統電網供電區域負載,並對蓄電池充電。在連網操作模式下,所有區域負載之虛功率及諧波功率均可由蓄電池儲能系統提供。
透過共通之共振式隔離直流/直流轉換器,蓄電池儲能系統之蓄電池組可由所提含多電源之輔助充電系統進行充電。其中,三相交流源經由三相切換式整流器連接至蓄電池儲能系統,所採之切換式整流器可為三相單開關切換式整流器或維也納切換式整流器。而可能之輸入交流電源包括備用交流配電迴路、風力發電機、微型渦流機及飛輪發電機等。直流輔助充電源如太陽能或燃料電池,係由所開發之交錯式升-降壓型直流/直流轉換器介接至蓄電池儲能系統。此外,微電網及電動車輛亦可接至本蓄電池儲能系統,執行互連操作。
關鍵詞:蓄電池儲能系統、微電網、變頻器、切換式整流器、共振式轉換器、交錯式、連網操控、獨立操控。
This thesis presents a multifunctional battery energy storage system (BESS) with multiple auxiliary charging sources and its operation control. The DC-link voltage (400V) in the developed BESS is established from the 96V battery bank via an interleaving bi-directional DC/DC converter with two cells. Only single DC-link current sensing is required for making the current-mode controls of the parallel converters. Then a bilateral three-phase inverter is developed to generate 60Hz/220V AC output voltages. Through proper controls, the developed inverter possesses flexible power conditioning control capability. The developed BESS is arranged to possess the following functions: (1) Autonomous mode: the local loads are powered by the BESS with good waveform quality. (2) Grid-connected mode: The BESS is connected to the utility grid via synchronization process for conducting the following three operation modes: (i) Floating mode: The utility grid only supplies real power to the local load, and all load reactive as well as harmonic powers are compensated by the BESS; (ii) Discharging mode (or battery-to-grid (B2G) mode): The BESS supplies power to the local load and sends the preset power back to the utility grid; and (iii) Charging mode (or grid-to-battery (G2B) mode): The utility grid supplies power to the local load and also charges the battery. The BESS can compensate all load reactive and harmonic powers in grid connected operation.
The battery bank of the developed BESS can be charged by an auxiliary charger system with multiple auxiliary charging sources through a common resonant isolated DC/DC converter. The three-phase AC sources are connected to the BESS via three-phase switch-mode rectifiers, such as three-phase single-switch (3P1SW) SMR and Vienna three-phase three-switch SMR. And the possible sources may include backup AC distribution network, wind generator, micro-turbine generator and flywheel generator, etc. As to the DC auxiliary charging sources, such as photovoltaic (PV) cell and solid-state fuel cell (SoFC), they are interfaced to the BESS by the developed interleaving buck-boost DC/DC converter. Moreover, the micro-grid and electric vehicle can be incorporated into the developed BESS to conduct their inter-connected operations.
摘要............a
致謝............b
目錄............c
第一章、簡介......................d
第二章、蓄電池儲能系統介紹...........e
第三章、使用單電流感測器之雙向交錯式直流/直流電池介面轉換器......f
第四章、插入式輔助充電器系統.........g
第五章、三相變頻器.................h
第六章、整體性能測試................i
第七章、結論......................j
附錄:英文論文....................l
REFERENCES
A. Micro-grid and Distributed Power Systems
[1]G. M. Masters, Renewable and efficient electric power systems, Wiley-Interscience, New Jersey, 2004.
[2]Y. Ito, Z. Yang and H. Akagi, “DC micriogrid based distribution power generation system,” in Proc. IEEE Int. Power Electron. Motion Control Conf., 2004, vol.3, pp. 1740-1745.
[3]F. Blaabjerg, R. Teodorescu, M. Liserre and A.V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, 2006.
[4]N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94, 2007.
[5]H. Kakigano, Y. Miura, T. Ise, R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCC, 2007, pp. 518-525.
[6]P. Biczel, “Power electronic converters in DC micro-grid,” in Proc. IEEE CPE, 2007, pp. 1-6.
[7]J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits Syst. Mag., vol. 8, no. 3, pp. 52-66, 2008.
[8]J. M. Guerrero, J. C. Vasquez, J. Matas, L. García de Vicuña and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids- a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2010.
[9]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[10]I. J. Balaguer, Q. Lei, S. Yang and U. Supatti and F. Z. Peng, “Control for grid- connected and intentional islanding operations of distributed power generation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 147-157, 2011.
[11]K. Yukita, K. Ban, Y. Goto, K. Ichiyanagi, K. Hirose, T. Ushirokawa, Y. Okui and H. Takabayashi, “Power supply system of DC/AC micro grid system,” in Proc. IEEE ICPE & ECCE, 2011, pp. 228-234.
[12]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de vicuña and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011.
[13]H. Kakigano, Y. Miura and T. Ise, “Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2246-2258, 2013.
B. Energy Storage Devices and Systems
[14]R. Yokoyama, Y. Hida, K. Koyanagi and K. Iba, “The role of battery systems and expandable distribution networks for smarter grid,” in Proc. IEEE PESGM., 2011, pp. 1-6.
[15]L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, 2005.
[16]A. Abedini and A. Nasiri, “Applications of super capacitors for PMSG wind turbine power smoothing,” in Proc. IEEE IECON., 2008, pp. 3347-3351.
[17]R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
[18]Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007.
[19]R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage system,” in Proc. Int. Conf. Power Engineering Energy and Electrical Drives, 2011, pp. 1-6.
[20]H. Babazadeh, W.Gao and X.Wang, “Controller design for a hybrid energy storage system enabling longer battery life in wind turbine generators,” in Proc. IEEE NAPS, 2011, pp.1-7.
[21]C. M. Liaw, T. H. Chen, S. J. Chiang, C. M. Lee and C. T. Wang, “Small battery storage system,” Proc. Inst. Elect. Eng., vol. 140, pt. B, no. 1, pp. 7-17, 1993.
[22]S. J. Chiang, S. C. Hwang and C. M. Liaw, “Three-phase multi-functional battery energy storage system,” IEE Proc. Elect. Power Applicat., Vol. 142, No. 4, pp. 275-284, 1995.
[23]C. M. Liaw, L. Jan, W. C. Wu and S. J. Chiang, “Operation control of paralleled three-phase battery energy storage system,” IEE Proceedings-Electric Power Applications., vol. 143, no. 4, pp. 317-322, 1996.
[24]Z. Haihua, T. Bhattacharya, T. Duong and T. S. T. Siew, “Composite energy storage system involving battery and ultracapacitor with dynamic energy management in micro-grid applications,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923-930, 2011.
[25]K. L. Dinh and Y. Hayashi, “Centralized BESS control to minimize demand of PV-supplied micro-grid under voltage constraints,” in Proc. IEEE PECon, 2012, pp. 864-869.
[26]A. R. Sparacino, G. F. Reed, R. J. Kerestes, B. M. Grainger and Z. T. Smith, “Survey of battery energy storage systems and modeling techniques,” in Proc. Power and Energy Society General Meeting, 2012, pp. 1-8.
[27]M. Sechilariu, W. Baochao and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607-1618, 2013.
[28]L. Roggia, C. Rech, L. Schuch, J. E. Baggio, H. L. Hey and J. R. Pinheiro, “Design of a sustainable residential microgrid system including PHEV and energy storage device,” in Proc. Eur. Conf. Power Electron. Appl., 2011, pp. 1-9.
[29]Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid., vol. 3, no. 1, pp. 559-564, 2012.
C. PWM Inverters and Some Key Issues
[30]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[31]Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[32]Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
[33]B. Vafakhah, J. Salmon and A.M. Knight, “Interleaved discontinuous space-vector PWM for a multilevel PWM VSI using a three-phase split-wound coupled inductor,” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2015-2024, 2010.
[34]A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
[35]F. Botteron, R. Carballo, R. Nunez, A. Quintana, G. Fernandez, “High reliability and performance PWM inverter for standalone microgrids,” IEEE Trans. Latin America, vol. 11, no. 1, pp. 505-511, 2013.
[36]W. Fei, J. L. Duarte and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application: Concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp.350-3513, 2011.
[37]H. Valderrama-Blavi, J. M. Bosque, F. Guinjoan, L. Marroyo and L. Martinez- Salamero, “Power adaptor device for domestic DC-microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp.1191-1203, 2013.
[38]J. Holtz, “Pulse width modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[39]A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[40]D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
[41]S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007.
[42]V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007.
[43]M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[44]W. T. Su and C. M. Liaw, “Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 505-517, 2006.
[45]M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[46]B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appl., vol. 148, no. 6, pp. 503-512, 2001.
[47]Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, 2008, pp. 479-484.
[48]S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
[49]C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE PESC, vol. 2, 2001, pp. 17-21.
[50]F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009.
[51]A. Sato and T. Noguchi, “Voltage-source PWM rectifier–inverter based on direct power control and its operation characteristics,” IEEE Trans. Power Electron, vol. 26, no. 5, pp. 1559-1567, 2011.
[52]J. Alonso-Martinez, J. Eloy-Garciia, D. Santos-Martin and S. Arnalte, “A new variable frequency optimal direct power control algorithm,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1442-1451, 2013.
[53]A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[54]A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007.
[55]D. Limon, M. Pomar, J. E. Normey-Rico, T. L. M. Santos and E. F. Camacho, “Robust design of dead-time compensator controllers for constrained non-linear systems,” IEEE CDC-ECC, pp. 2022-2027, 2011.

[56]P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. IEEE PEDS, vol. 2, 1995, pp. 571-576.
[57]T. G. Habetler, R. Naik and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, 2002.
[58]M. Illindala and G. Venkataramanan, “Frequency/sequence selective filters for power quality improvement in a microgrid,” IEEE Trans. Smart Grid., vol.3, no. 4, pp. 2039-2047, 2012.
[59]J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, vol. 4, 1993, pp. 65-70.
[60]P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[61]F. Blaabjerg, D. Neacsu and J. K. Pedersen, “Adaptive SVM to compensate DC-link voltage ripple for component minimized voltage source inverters,” in Proc. IEEE PESC, vol. 1, 1997, pp. 580-589.
[62]J. Sebasti, D. G. Lamar, M. M. Hernando, A. Rodriguez-Alonso and A. Fernandez, “Steady-state analysis and modeling of power factor correctors with appreciable voltage ripple in the output-voltage feedback loop to achieve fast transient response,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2555-2566, 2009.
[63]J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IEEE IPEMC, vol. 3, 2000, pp. 1122-1126.
[64]M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. IEEE APEC, vol. 3, 2004, pp. 1709-1713.
[65]H. Lavric and R. Fiser, “Flux balance assurance in output transformers of sine-wave inverters using DC autonulling control principle,” in Proc. EPE-PEMC, 2006, pp. 218-221.
D. Switch-Mode Rectifiers
[66]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[67]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[68]H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[69]D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. IEEE PESC, 1993, pp. 657-662.
[70]R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE APEC, vol. 2, 1997, pp. 895-901.
[71]J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334, 1998.
[72]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199.
[73]J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[74]M. M. Reis, B. Soares, L. Barreto, E. Freitas, C. E. A. Silva, R. T. Bascope and D. S. Olivera, “A variable speed wind energy conversion system connected to the grid for small wind generator,” in Proc. IEEE APEC, 2008, pp. 751-755.
[75]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199.
[76] J. Yungtaek and M. M. Jovanović, “The TAIPAI rectifier—A new three-phase two-switch ZVS PFC DCM boost rectifier,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 686-694, 2013.
[77]H. Kanaan, K. Al-Haddad, R. Chaffai, L. Duguay, F. Fnaiech, “A new low-frequency state model of a three-phase three-switch three-level fixed-frequency PWM rectifier,” in Proc. IET INTELEC, 2001, pp. 384-391.
[78]U. Drofenik and J. W. Kolar, “Comparison of not synchronized sawtooth carrier and synchronized triangular carrier phase current control for the VIENNA rectifier I,” in Proc. IEEE ISIE, 1999, vol. 1, pp. 13-19.
[79]J. W. Kolar, H. Ertl and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. APEC, vol. 2, 1996, pp. 514-523.
[80]N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three- phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
[81]B. Tamyurek, A. Ceyhan, E. Birdane and F. Keles, “A simple DSP based control system design for a three-phase high power factor boost rectifier,” in Proc. IEEE APEC, 2008, pp. 1416-1422.
[82]R. Ghosh and G. Narayanan, “Control of three-phase, four-wire PWM rectifier,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 96-106, 2008.
[83]R. L. Alves and I. Barbi, “Analysis and implementation of a hybrid high-power-factor three-phase unidirectional rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 632-640, 2009.
[84]A. Gensior, H. Sira-Ramirez, J. Rudolph and H. Guldner, “On some nonlinear current controllers for three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 360-370, 2009.
[85]J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.


E. Interface DC-DC Converters and Interleaved DC/DC Converters
[86]F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC., 1995, pp. 887-892.
[87]F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, vol. 1, 1998, pp. 287-293,.
[88]K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE VPPC, 2005, pp. 552-555, ,.

[89]C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008.
[90]H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[91]G. Calderon-Lopez, A. J. Forsyth and D. R. Nuttall, “Design and performance evaluation of a 10-kW interleaved boost converter for a fuel cell electric vehicle,” IEEE Power Electron., vol. 2, pp. 1-5, 2006.
[92]L. T. Jakobsen, O. Garcia, J. A. Oliver, P. Alou, J. A. Cobos, and M. A. E. Andersen, “Interleaved buck converter with variable number of active phases and a predictive current sharing scheme,” in Proc. IEEE PESC, 2008, pp. 3360–3365.
[93]H. Kim, M. Falahi, T.M. Jahns and M. Degner, “Inductor current measurement and regulation using a single DC link current sensor for interleaved DC-DC converters,” IEEE Trans. Power Electronics, vol. 26, no. 5, pp. 1503-1510, 2011.
[94]J. C. Schroeder, M. Petersen and F. W. Fuchs, “One-sensor current sharing in multiphase interleaved DC/DC converters with coupled inductors,” in Proc. IEEE EPE/PEMC, 2012, pp. DS3c.1-1 - DS3c.1-7.
F. HF Isolated Converter
[95]C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000.
[96]G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005.
[97]J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC converters under transient conditions,” in Proc. APEC, 2006, pp. 523-527.
[98]S. Inoue and H. Akagi, “A bidirectional isolated DC/DC converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans. Power. Electron., vol. 22, no. 2, pp. 535-542, 2007.
[99]O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched isolated DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008.
[100]X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850-862, 2010.
[101]T. Jimichi, H. Fujita and H. Akagi, “A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp.169-175, 2011.
[102]J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC’01., 2001, pp. 605-609.
[103]G. Ivensky, S. Bronshtein and A. Abramovitz, “Approximate analysis of resonant LLC DC-DC converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3274–3284, 2011.
[104]“Half-bridge LLC resonant converter design using FSFR-series Fairchild power switch,” Available: http://www.fairchildsemi.com/an/AN/AN-4151.pdf, 2013,7,30
[105]F. Musavi, M. Craciun, D. S. Gautam, W. Eberle and W. G. Dunford, “An LLC resonant DC-DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437- 5445, 2013.
G. Others
[106]“Digital signal controller TMS320F2812 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f2812.pdf, 2013,7,30.
[107]“Digital signal controller TMS320F28335 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, 2013,7,30.
[108]“Digital signal controller TMS320F28069 datasheet,” Available: http://datasheet. elcodis.com/pdf/21/97/219781/tmdxcncd28069.pdf, 2013,7,30.
[109]‘‘C28x IQmath Library-A Virtual Floating Point Engine,’’ Available: http://focus.ti. com/lit/sw/sprc990/sprc990.pdf, 2013,7,30.
[110]A. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del., vol. 16, no. 8, pp. 782-790, 2001.
[111]R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, 2nd ed., New York: McGraw-Hill, 2003.
[112]T. M. Blooming, D. J. Carnovale, “Application of IEEE STD 519-1992 Harmonic Limits, ” in Proc. IEEE Pulp and Paper Industry Technical Conference, 2006, pp. 1-9.
[113]J. Y. Huang, “Development of isolated three-phase inverter systems with switch mode rectifier front-ends,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2010.
[114]H. X. Lin, “Development of a bidirectional three-phase inverter and its operation control study between DC micro-grid and utility grid” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2011.
[115]Y. W. Lin, “Development of a home micro-grid with multiple renewable source and energy storage devices” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2011.
[116]J. W. Dai, “A battery energy storage system with auxiliary charging source for DC micro-grid and electric vehicle to perform grid-connected operation” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2012.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *