|
REFERENCES A. Micro-grid and Distributed Power Systems [1]G. M. Masters, Renewable and efficient electric power systems, Wiley-Interscience, New Jersey, 2004. [2]Y. Ito, Z. Yang and H. Akagi, “DC micriogrid based distribution power generation system,” in Proc. IEEE Int. Power Electron. Motion Control Conf., 2004, vol.3, pp. 1740-1745. [3]F. Blaabjerg, R. Teodorescu, M. Liserre and A.V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, 2006. [4]N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94, 2007. [5]H. Kakigano, Y. Miura, T. Ise, R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCC, 2007, pp. 518-525. [6]P. Biczel, “Power electronic converters in DC micro-grid,” in Proc. IEEE CPE, 2007, pp. 1-6. [7]J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits Syst. Mag., vol. 8, no. 3, pp. 52-66, 2008. [8]J. M. Guerrero, J. C. Vasquez, J. Matas, L. García de Vicuña and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids- a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2010. [9]Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011. [10]I. J. Balaguer, Q. Lei, S. Yang and U. Supatti and F. Z. Peng, “Control for grid- connected and intentional islanding operations of distributed power generation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 147-157, 2011. [11]K. Yukita, K. Ban, Y. Goto, K. Ichiyanagi, K. Hirose, T. Ushirokawa, Y. Okui and H. Takabayashi, “Power supply system of DC/AC micro grid system,” in Proc. IEEE ICPE & ECCE, 2011, pp. 228-234. [12]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de vicuña and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids-A general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011. [13]H. Kakigano, Y. Miura and T. Ise, “Distribution voltage control for DC microgrids using fuzzy control and gain-scheduling technique,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2246-2258, 2013. B. Energy Storage Devices and Systems [14]R. Yokoyama, Y. Hida, K. Koyanagi and K. Iba, “The role of battery systems and expandable distribution networks for smarter grid,” in Proc. IEEE PESGM., 2011, pp. 1-6. [15]L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, 2005. [16]A. Abedini and A. Nasiri, “Applications of super capacitors for PMSG wind turbine power smoothing,” in Proc. IEEE IECON., 2008, pp. 3347-3351. [17]R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006. [18]Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007. [19]R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage system,” in Proc. Int. Conf. Power Engineering Energy and Electrical Drives, 2011, pp. 1-6. [20]H. Babazadeh, W.Gao and X.Wang, “Controller design for a hybrid energy storage system enabling longer battery life in wind turbine generators,” in Proc. IEEE NAPS, 2011, pp.1-7. [21]C. M. Liaw, T. H. Chen, S. J. Chiang, C. M. Lee and C. T. Wang, “Small battery storage system,” Proc. Inst. Elect. Eng., vol. 140, pt. B, no. 1, pp. 7-17, 1993. [22]S. J. Chiang, S. C. Hwang and C. M. Liaw, “Three-phase multi-functional battery energy storage system,” IEE Proc. Elect. Power Applicat., Vol. 142, No. 4, pp. 275-284, 1995. [23]C. M. Liaw, L. Jan, W. C. Wu and S. J. Chiang, “Operation control of paralleled three-phase battery energy storage system,” IEE Proceedings-Electric Power Applications., vol. 143, no. 4, pp. 317-322, 1996. [24]Z. Haihua, T. Bhattacharya, T. Duong and T. S. T. Siew, “Composite energy storage system involving battery and ultracapacitor with dynamic energy management in micro-grid applications,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923-930, 2011. [25]K. L. Dinh and Y. Hayashi, “Centralized BESS control to minimize demand of PV-supplied micro-grid under voltage constraints,” in Proc. IEEE PECon, 2012, pp. 864-869. [26]A. R. Sparacino, G. F. Reed, R. J. Kerestes, B. M. Grainger and Z. T. Smith, “Survey of battery energy storage systems and modeling techniques,” in Proc. Power and Energy Society General Meeting, 2012, pp. 1-8. [27]M. Sechilariu, W. Baochao and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1607-1618, 2013. [28]L. Roggia, C. Rech, L. Schuch, J. E. Baggio, H. L. Hey and J. R. Pinheiro, “Design of a sustainable residential microgrid system including PHEV and energy storage device,” in Proc. Eur. Conf. Power Electron. Appl., 2011, pp. 1-9. [29]Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid., vol. 3, no. 1, pp. 559-564, 2012. C. PWM Inverters and Some Key Issues [30]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003. [31]Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004. [32]Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008. [33]B. Vafakhah, J. Salmon and A.M. Knight, “Interleaved discontinuous space-vector PWM for a multilevel PWM VSI using a three-phase split-wound coupled inductor,” IEEE Trans. Ind. Appl., vol. 46, no. 5, pp. 2015-2024, 2010. [34]A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011. [35]F. Botteron, R. Carballo, R. Nunez, A. Quintana, G. Fernandez, “High reliability and performance PWM inverter for standalone microgrids,” IEEE Trans. Latin America, vol. 11, no. 1, pp. 505-511, 2013. [36]W. Fei, J. L. Duarte and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application: Concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp.350-3513, 2011. [37]H. Valderrama-Blavi, J. M. Bosque, F. Guinjoan, L. Marroyo and L. Martinez- Salamero, “Power adaptor device for domestic DC-microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp.1191-1203, 2013. [38]J. Holtz, “Pulse width modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992. [39]A. M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999. [40]D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002. [41]S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007. [42]V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007. [43]M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [44]W. T. Su and C. M. Liaw, “Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 505-517, 2006. [45]M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of-freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009. [46]B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appl., vol. 148, no. 6, pp. 503-512, 2001. [47]Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, 2008, pp. 479-484. [48]S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012. [49]C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE PESC, vol. 2, 2001, pp. 17-21. [50]F. Barrero, M. R. Arahal, R. Gregor, S. Toral and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009. [51]A. Sato and T. Noguchi, “Voltage-source PWM rectifier–inverter based on direct power control and its operation characteristics,” IEEE Trans. Power Electron, vol. 26, no. 5, pp. 1559-1567, 2011. [52]J. Alonso-Martinez, J. Eloy-Garciia, D. Santos-Martin and S. Arnalte, “A new variable frequency optimal direct power control algorithm,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1442-1451, 2013. [53]A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999. [54]A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007. [55]D. Limon, M. Pomar, J. E. Normey-Rico, T. L. M. Santos and E. F. Camacho, “Robust design of dead-time compensator controllers for constrained non-linear systems,” IEEE CDC-ECC, pp. 2022-2027, 2011.
[56]P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. IEEE PEDS, vol. 2, 1995, pp. 571-576. [57]T. G. Habetler, R. Naik and T. A. Nondahl, “Design and implementation of an inverter output LC filter used for dv/dt reduction,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 327-331, 2002. [58]M. Illindala and G. Venkataramanan, “Frequency/sequence selective filters for power quality improvement in a microgrid,” IEEE Trans. Smart Grid., vol.3, no. 4, pp. 2039-2047, 2012. [59]J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, vol. 4, 1993, pp. 65-70. [60]P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993. [61]F. Blaabjerg, D. Neacsu and J. K. Pedersen, “Adaptive SVM to compensate DC-link voltage ripple for component minimized voltage source inverters,” in Proc. IEEE PESC, vol. 1, 1997, pp. 580-589. [62]J. Sebasti, D. G. Lamar, M. M. Hernando, A. Rodriguez-Alonso and A. Fernandez, “Steady-state analysis and modeling of power factor correctors with appreciable voltage ripple in the output-voltage feedback loop to achieve fast transient response,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2555-2566, 2009. [63]J. Gao, X. Zhao, X. Yang and Z. Wang, “The research on avoiding flux imbalance in sinusoidal wave inverter,” in Proc. IEEE IPEMC, vol. 3, 2000, pp. 1122-1126. [64]M. Li and Y. Xing, “Digital voltage regulation with flux balance control for sine wave inverters,” in Proc. IEEE APEC, vol. 3, 2004, pp. 1709-1713. [65]H. Lavric and R. Fiser, “Flux balance assurance in output transformers of sine-wave inverters using DC autonulling control principle,” in Proc. EPE-PEMC, 2006, pp. 218-221. D. Switch-Mode Rectifiers [66]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [67]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [68]H. Mao, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997. [69]D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” in Proc. IEEE PESC, 1993, pp. 657-662. [70]R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” in Proc. IEEE APEC, vol. 2, 1997, pp. 895-901. [71]J. Yungtaek and M. M. Jovanovic, “A comparative study of single-switch three-phase high-power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp.1327-1334, 1998. [72]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199. [73]J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010. [74]M. M. Reis, B. Soares, L. Barreto, E. Freitas, C. E. A. Silva, R. T. Bascope and D. S. Olivera, “A variable speed wind energy conversion system connected to the grid for small wind generator,” in Proc. IEEE APEC, 2008, pp. 751-755. [75]D. S. Oliverira, L. Barreto, F. Antunes, M. Silva, D. L. Queiroz and A. R. Rangel, “A DCM three-phase high frequency semi-controlled rectifier feasible for power WECS based on a permanent magnet generator,” in Proc. IEEE COBEP, 2009, pp. 1193-1199. [76] J. Yungtaek and M. M. Jovanović, “The TAIPAI rectifier—A new three-phase two-switch ZVS PFC DCM boost rectifier,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 686-694, 2013. [77]H. Kanaan, K. Al-Haddad, R. Chaffai, L. Duguay, F. Fnaiech, “A new low-frequency state model of a three-phase three-switch three-level fixed-frequency PWM rectifier,” in Proc. IET INTELEC, 2001, pp. 384-391. [78]U. Drofenik and J. W. Kolar, “Comparison of not synchronized sawtooth carrier and synchronized triangular carrier phase current control for the VIENNA rectifier I,” in Proc. IEEE ISIE, 1999, vol. 1, pp. 13-19. [79]J. W. Kolar, H. Ertl and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. APEC, vol. 2, 1996, pp. 514-523. [80]N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three- phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008. [81]B. Tamyurek, A. Ceyhan, E. Birdane and F. Keles, “A simple DSP based control system design for a three-phase high power factor boost rectifier,” in Proc. IEEE APEC, 2008, pp. 1416-1422. [82]R. Ghosh and G. Narayanan, “Control of three-phase, four-wire PWM rectifier,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 96-106, 2008. [83]R. L. Alves and I. Barbi, “Analysis and implementation of a hybrid high-power-factor three-phase unidirectional rectifier,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 632-640, 2009. [84]A. Gensior, H. Sira-Ramirez, J. Rudolph and H. Guldner, “On some nonlinear current controllers for three-phase boost rectifiers,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 360-370, 2009. [85]J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
E. Interface DC-DC Converters and Interleaved DC/DC Converters [86]F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC., 1995, pp. 887-892. [87]F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, vol. 1, 1998, pp. 287-293,. [88]K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE VPPC, 2005, pp. 552-555, ,.
[89]C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008. [90]H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008. [91]G. Calderon-Lopez, A. J. Forsyth and D. R. Nuttall, “Design and performance evaluation of a 10-kW interleaved boost converter for a fuel cell electric vehicle,” IEEE Power Electron., vol. 2, pp. 1-5, 2006. [92]L. T. Jakobsen, O. Garcia, J. A. Oliver, P. Alou, J. A. Cobos, and M. A. E. Andersen, “Interleaved buck converter with variable number of active phases and a predictive current sharing scheme,” in Proc. IEEE PESC, 2008, pp. 3360–3365. [93]H. Kim, M. Falahi, T.M. Jahns and M. Degner, “Inductor current measurement and regulation using a single DC link current sensor for interleaved DC-DC converters,” IEEE Trans. Power Electronics, vol. 26, no. 5, pp. 1503-1510, 2011. [94]J. C. Schroeder, M. Petersen and F. W. Fuchs, “One-sensor current sharing in multiphase interleaved DC/DC converters with coupled inductors,” in Proc. IEEE EPE/PEMC, 2012, pp. DS3c.1-1 - DS3c.1-7. F. HF Isolated Converter [95]C. M. Liaw and T. H. Chen, “A soft-switching mode rectifier with power factor correction and high frequency transformer link,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 644-654, 2000. [96]G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005. [97]J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC converters under transient conditions,” in Proc. APEC, 2006, pp. 523-527. [98]S. Inoue and H. Akagi, “A bidirectional isolated DC/DC converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans. Power. Electron., vol. 22, no. 2, pp. 535-542, 2007. [99]O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched isolated DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008. [100]X. Li and A. K. S. Bhat, “Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 850-862, 2010. [101]T. Jimichi, H. Fujita and H. Akagi, “A dynamic voltage restorer equipped with a high-frequency isolated DC-DC converter,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp.169-175, 2011. [102]J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC’01., 2001, pp. 605-609. [103]G. Ivensky, S. Bronshtein and A. Abramovitz, “Approximate analysis of resonant LLC DC-DC converter,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3274–3284, 2011. [104]“Half-bridge LLC resonant converter design using FSFR-series Fairchild power switch,” Available: http://www.fairchildsemi.com/an/AN/AN-4151.pdf, 2013,7,30 [105]F. Musavi, M. Craciun, D. S. Gautam, W. Eberle and W. G. Dunford, “An LLC resonant DC-DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437- 5445, 2013. G. Others [106]“Digital signal controller TMS320F2812 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f2812.pdf, 2013,7,30. [107]“Digital signal controller TMS320F28335 datasheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, 2013,7,30. [108]“Digital signal controller TMS320F28069 datasheet,” Available: http://datasheet. elcodis.com/pdf/21/97/219781/tmdxcncd28069.pdf, 2013,7,30. [109]‘‘C28x IQmath Library-A Virtual Floating Point Engine,’’ Available: http://focus.ti. com/lit/sw/sprc990/sprc990.pdf, 2013,7,30. [110]A. Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Del., vol. 16, no. 8, pp. 782-790, 2001. [111]R. C. Dugan, M. F. McGranaghan, S. Santoso and H. W. Beaty, Electrical Power Systems Quality, 2nd ed., New York: McGraw-Hill, 2003. [112]T. M. Blooming, D. J. Carnovale, “Application of IEEE STD 519-1992 Harmonic Limits, ” in Proc. IEEE Pulp and Paper Industry Technical Conference, 2006, pp. 1-9. [113]J. Y. Huang, “Development of isolated three-phase inverter systems with switch mode rectifier front-ends,” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2010. [114]H. X. Lin, “Development of a bidirectional three-phase inverter and its operation control study between DC micro-grid and utility grid” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2011. [115]Y. W. Lin, “Development of a home micro-grid with multiple renewable source and energy storage devices” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2011. [116]J. W. Dai, “A battery energy storage system with auxiliary charging source for DC micro-grid and electric vehicle to perform grid-connected operation” Master Thesis, Department of Electrical Engineering NTHU, Hsinchu, ROC, 2012.
|