帳號:guest(3.129.69.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王顥霖
作者(外文):Wang, Hao-Lin
論文名稱(中文):應用於光伏系統之具零電壓切換隔離型模組整合轉換器
論文名稱(外文):A ZVS Isolated Module-Integrated Converter for Photovoltaic Systems
指導教授(中文):潘晴財
吳財福
指導教授(外文):Pan, Ching-Tsai
Wu, Tsai-Fu
口試委員(中文):陳政裕
江茂欽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:100061501
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:88
中文關鍵詞:交流模組模組整合轉換器零電壓切換擬直流鏈
外文關鍵詞:AC ModuleModule-integrated converterZVSPseudo dc-link
相關次數:
  • 推薦推薦:0
  • 點閱點閱:370
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
  有鑑於全球氣候變遷、生態環境破壞及地球能源的迅速耗竭等問題,如何有效地運用再生能源已成為全球關注的議題。在眾多的再生能源中,光伏系統相較於其他發電系統在環境上與經濟效益上擁有較多的優勢。由於模組整合轉換器不僅可以克服遮蔽效應對太陽光伏模組所帶來的影響,同時也擁有較高的安全性,因此成為近年來熱門的研究課題。本論文之主要目的即為提出一應用於光伏系統之具零電壓切換隔離型模組整合轉換器以有效地利用太陽能資源。

  本論文之主要貢獻可分述如下:首先為第一點貢獻,本論文提出一具零電壓切換之新隔離型模組整合轉換器。此新模組整合轉換器電路架構乃基於隔離型SEPIC轉換器之延伸,再串接一低頻全橋反流器而成。藉由前級所加入之主動箝位電路可以使主開關與輔助開關皆具零電壓柔性切換之能力,同時有效地消減輸出二極體之反向回復電流成分。第二點貢獻,此新模組整合轉換器只需藉由簡單的控制方法,即可輸出一具整流之正弦波波形電壓至擬直流鏈之交流電容上。由於本文前級電路採兩相交錯式控制,因此可降低輸入電流漣波對電路所造成之電磁干擾;此外,此新模組整合轉換器主動開關之責任週期可全範圍自由調整,因此擁有較寬廣的可應用之輸入與輸出電壓範圍。第三點貢獻,依據理論分析結果,實際製作一額定25V直流輸入、110V均方根值交流輸出,及額定輸出功率為150W之雛型系統,以驗證本文所提新模組整合轉換器之可行性。經由實驗結果顯示,本論文所研製之新模組整合轉換器之轉換效率於40W至150W的負載情況下均在86.7%以上,在40W負載下可達最高效率92.4%。
In view of the problems of global climate change, environmental impact and shortage of fossil fuels, exploring the use of renewable energy has drawn a lot of attention internationally. Among a variety of renewable energy technologies, photovoltaic technology has more environmental and economic benefits than the others. However, existing DC converters still face the partial shading effects bottleneck problem. Recently, module-integrated converters (MIC) have become a hot research topic as a means for overcoming the partial shading effects of photovoltaic systems and achieving high safety. Hence, in this thesis, to further improve the energy yield, emphasis is placed on the development of a novel ZVS isolated module-integrated converter for photovoltaic systems.
Major contributions of this thesis can be summarized as follows. First, a novel MIC with pseudo dc-link and galvanic isolation is proposed. It consists of an isolated SEPIC converter cascaded with a full-bridge inverter operating under line frequency to achieve high efficiency. Furthermore, active-clamped circuits are added to the isolated SEPIC converter to achieve zero voltage switching and alleviate the reverse-recovery current of the output diodes. Secondly, a simple control strategy is proposed to generate a rectified sine waveform voltage at the dc-link capacitors. Also, to reduce input current ripple, an interleaved control strategy is adopted. It has been found that the duty ratio of the active switches can be operated in full range to achieve wider output voltage control range. Finally, a prototype with 25 V input, 110 Vrms output and 150 W rating has been constructed for verifying the feasibility of the proposed MIC. Experimental results have shown that the overall efficiency of the MIC can be maintained above 86.7% as the load varies from 40 W to 150 W, and the highest efficiency of 92.4% has been achieved at 40W.
摘 要 I
英文摘要 II
誌 謝 IV
目 錄 V
圖 目 錄 VI
表 目 錄 X
第一章 緒 論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 本論文之貢獻 3
1.4 本論文之內容概述 4
第二章 太陽光伏電力系統簡介 5
2.1 前言 5
2.2 太陽電池特性 5
2.3 最大功率追蹤策略 12
2.4 系統架構 16
2.5 模組整合轉換器 18
第三章 新模組整合轉換器之工作原理與穩態特性分析 25
3.1 前言 25
3.2 電路架構及工作原理 26
3.3 穩態特性分析 35
第四章 電路製作與實測結果 52
4.1 前言 52
4.2 功率級電路設計及製作 52
4.3 控制級電路設計及實現 55
4.4 模擬與實測結果 60
第五章 結 論 82
參考文獻 84
[1] T. Gilchrist, “Fuel cell to the fore,” IEEE Spectrum, Vol. 35, No. 11, pp.35-40, 1998.
[2] S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, Vol. 89, No. 8, pp. 1216-1226, Aug. 2001.
[3] G. Connor and H. W. Whittington, “A vision of true costing [renewable energy],” Engineering Science and Education Journal, Vol. 10, No. 1, pp. 4-12, Feb. 2001.
[4] M. Begovic, A. Pregelj, A. Rohatgi and C. Honsberg, “Green power: status and perspectives,” Proceedings of the IEEE, Vol. 89, No. 12, pp. 1734-1743, Dec. 2001.
[5] M. Ellis, M. Von Spakovsky and D. Nelson, “Fuel cell systems: efficient, flexible energy conversion for 21st century,” Proceedings of the IEEE, Vol. 89, No. 12, pp. 1808-1818, Dec. 2001.
[6] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Industrial Electronics, Vol. 53, No. 2, pp. 486-494, Apr. 2006.
[7] 經濟部能源局,「陽光屋頂百萬座計畫」,網址:http://mrpv.org.tw/about.aspx,2013年5月14日。
[8] B. K. Bose, P. M. Szxzdsny and R. L. Steigerwald, “Microcomputer control of a residential photovoltaic power conditioning system,” IEEE Trans. Industry Applications, Vol. 1A-21, No. 5, pp. 1182-1191, 1985.
[9] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power point tracking,” IEEE Transactions on Energy Conversion, Vol. 17, pp. 514-522, Dec. 2002.
[10] K. Harada, G. Zhao, “Controlled power interface between solar cells and AC source,” IEEE Transactions on Power Electronics, Vol. 8, pp. 654-662, Oct. 1993.
[11] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Conversion, Vol. 22, No. 2, pp. 439-449, Jun. 1985.
[12] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method”, IEEE Trans. Power Electronics, Vol. 20, No. 4, pp. 963-973, Jul. 2005.
[13] O. Wasynczuk, “Dynamic behavior of a class of photovoltaic power systems,” IEEE Trans. Power Apparatus and Systems, Vol. 102, No. 9, pp. 3031-3037, Sep. 1983.
[14] K. H. Hussein, I. Hoshino, T. Muta, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm foe rapidly changing atmospheric conditions,” Proceedings of IEE on Generation, Transmission and Distribution, Vol. 142, pp. 59-64, Jan. 1995.
[15] C. T. Pan, J. Y. Chen, C. P. Chu, and Y. S. Huang, “A fast maximum power point tracker for photovoltaic power systems,” IEEE Industrial Electronics Conf., pp. 21-24, 1999.
[16] 廖常興,市電並聯型之光伏風力混成型發電系統之研製,國立清華大學電機工程學系碩士論文,民國九十三年。
[17] S. B. Kjaer, “State of the art analysis for the ‘SolcelleInverter’ project,” Institute of Energy Technology – Aalborg University, Feb. 2002.
[18] 新電子科技雜誌,「家用太陽能市場起飛 微逆變器需求湧現」,網址:http://www.mem.com.tw/article_content.asp?sn=1207310009&page=1,2012年8月。
[19] S. W. H. de Haan, H. Oldenkamp, E. J. Wildenbeest, “Test results of a 130W AC module; a modular solar ac power station,” 1994 IEEE First World Conference on Photovoltaic Energy Conversion, Vol. 1, pp. 925-928, Dec. 1994.
[20] H. J. Chiu, Y. K. Lo, C. Y. Yang, S. J. Cheng, C. M. Huang, C. C. Chuang, M. C. Kuo, Y. M. Huang, Y. B. Jean, and Y. C. Huang, “A module-integrated isolated solar microinverter,” IEEE Trans. Industrial Electronics, Vol. 60, No. 2, pp. 781-788, Feb. 2013.
[21] R. Carbone, A. Tomaselli, “Recent Advances on AC PV-modules for grid –connected photovoltaic plants,” 2011 International Conference on Clean Electrical Power (ICCEP), pp. 124-129, June 2011.
[22] S. B. Kjaer, J. K. Pedersen, F. Blaabjerg, “Power inverter topologies for photovoltaic modules – a review,” IEEE Industry Applications Conf., Vol.2, pp. 782-788, Oct. 2002.
[23] Z. Zhao, M. Xu, Q. Chen, J. S. Lai, and Y Cho, “Derivation, analysis, and implementation of a Boost–Buck converter-based high-efficiency PV inverter,” IEEE Trans. Power Electronics, Vol. 27, No. 3, Mar. 2012.
[24] Q. Li, P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electronics, Vol. 23, No. 3, pp. 1320-1333, May 2008.
[25] D. C. Martins and R. Demonti, “Grid connected PV system using two energy processing stages,” Proceedings of IEEE Photovoltaic Specialists Conf., pp. 1649-1652, May 2002.
[26] P. Wolfs and Q. Li, “An analysis of a resonant half bridge dual converter operating in continuous and discontinuous modes,” Proceedings of IEEE PESC, pp. 1313-1318, 2002.
[27] F. Edwin, W. Xiao, and V. Khadkikar, “Topology review of single phase grid-connected module integrated converters for PV applications,” Proceedings of IEEE IECON, pp. 821-827, Oct. 2012.
[28] J. Beristain, J. Bordonau, A. Gilabert, and G. Velasco, “Synthesis and modulation of a single phase DC/AC converter with high-frequency isolation in photovoltaic energy applications,” Proceedings of IEEE PESC, pp. 1191-1196, 2003.
[29] K. C. A. de Souza, M. R. de Castro, and F. Antunes, “A DC/AC converter for single-phase grid-connected photovoltaic systems,” Proceedings of IEEE IECON, pp. 3268-3273, 2002.
[30] K. Chomsuwan, P. Prisuwanna, and V. Monyakul, “Photovoltaic grid-connected inverter using two-switch Buck-Boost converter,” Proceedings of IEEE Photovoltaic Specialists Conf., pp. 1527-1530, 2002.
[31] A. Fernandez, J. Sebastian, M. M. Hernando, M. Arias, and G. Perez, “Single stage inverter for a direct ac connection of a photovoltaic cell module,” in Proc. IEEE PESC, pp.93-98, 2006.
[32] M. Chen, J. Sun, “Reduced-order averaged modeling of active-clamp converters,” IEEE Transactions on Power Electronics, Vol. 21, pp. 487-494, Mar. 2006.
[33] 吳建銘,降壓同步倍壓整流半橋轉換器之研究,國立成功大學電機工程學系碩士論文,民國九十三年。
[34] 周彥良,應用於再生能源系統之具零電壓切換隔離型高升壓比直流轉換器,國立清華大學電機工程學系碩士論文,民國一百零一年。
[35] 李志龍,應用於無刷直流發電機之單開關低換向轉矩漣波交直流轉換器,國立清華大學電機工程學系碩士論文,民國一百零一年。
[36] EPARC,電力電子學綜論,全華圖書股份有限公司,2007年2月。
(此全文限內部瀏覽)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *