帳號:guest(3.145.50.222)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江秀月
作者(外文):Chiang, Hsiu-Yueh
論文名稱(中文):創新的方法應用於廔管裝設與血管狹窄的血管音研究
論文名稱(外文):A Novel Approach for Vascular Sounds of Arteriovenous Fistulas and Vascular Stenoses
指導教授(中文):桑慧敏
指導教授(外文):Song, Whey-Ming
口試委員(中文):林則孟
陳俊宏
賴盈州
徐文慶
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系碩士在職專班
學號:100036513
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:血管音獨立成份分析血管狹窄廔管
相關次數:
  • 推薦推薦:0
  • 點閱點閱:206
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
台灣的血液透析 (洗腎) 人口比起其他各國高居世界第一,又台灣健保完全給付
洗腎費用,可見台灣所需支付的洗腎相關醫療費用之龐大。如何提高台灣洗腎病患者
的醫療服務且同時降低醫療器材費用是當務之急。一個有效提高台灣洗腎患者的醫療
服務是 “提供洗腎患者較省錢、省時、省力及有效的血管狹窄量測裝置”,用來量測洗
腎患者是否適合洗腎之血管狀態。台灣工業技術研究院材化所現已開發出專為血管音
訊號量測的強化隨身裝置,本研究將著重於提高該量測裝置的預測準確率 (accuracy)、
敏感度 (sensitivity) 及確度 (specificity) 為發展目標。
本論文提出一系列的科學程序,包括 (1) 使用因子設計有系統地收集量測資料,(2)
使用獨立成份分析 (ICA) 消除血管音中的雜音,及 (3) 提出的創新 ICA 方法論,以幾
何與調和平均不等式為基礎,創立較傳統 ICA 更為有效的獨立成份估測算法。研究結
果已顯示,本論文所提出的創新方法論對於模擬的原始訊號的估計結果差異最小,也就
是,估計的品質較其他獨立成份估測法好。另外,對於血管狹窄的敏感度與確度皆為
100.0 %。對於廔管裝設的敏感度與確度分別為 99.1 % 與 97.9 %,在此部份,其他獨
立成份估測法中表現最好的估測法其敏感度與確度則分別為 96.8 % 與 95.8%。以上的
表現證實,本論文的創新方法論的預測績效皆優於其他獨立成份估測法,且能有效的提
高使用裝置的預測效果。
Taiwan is known to have the greatest number of dialysis patients total com-
pared to other countries. Also, unlike other countries, National Health Insurance
pays 100 percent of the cost of dialysis (i.e., if one has joined National Health In-
surance, one does not need to pay anything at all for dialysis ). Motivated by the
above two facts, the government of Taiwan and researchers have conducted many
studies with the aims of increasing the quality of dialysis service and reducing the
corresponding cost. One recent successful research regarding dialysis comes from
the Industrial Technology Research Institute (ITRI) in Taiwan, which has created
a portable measuring device for vascular sounds (ITRI-PMDV). The device tries
to measure whether a patient’s vascular stenosis is within the safety levels required
before any dialysis treatment.
This research focuses on increasing the sensitivity and specificity of the above-
mentioned ITRI-PMDV, where sensitivity is sometimes called the true positive
rate and the specificity is called the true negative rate. The proposed approach is
based on a series of scientific procedures, including (1) using design of analysis to
collect data systematically, (2) applying independent component analysis (ICA)
to remove the noise of vascular sounds, and (3) solving ICA via a new and more
effective algorithm based on the inequality of the geometric-harmonic means. For
vascular stenoses, results show that the sensitivity and specificity of the proposed
approach all are 100.0 %. For arteriovenous fistulas, results show that the sensi-
tivity and specificity of the proposed approach are 99.1 % and 97.9 % respectively,
while the sensitivity and specificity for the best of the traditional algorithm used
in the current ITRI-PMDV are 96.8 % and 95.8% respectively.
摘要
i
英文摘要
ii
目錄
iii
表目錄
v
圖目錄
vi

1

緒論
1
1.1
研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
1.2
研究動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
1.3
研究流程與架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1.4
命名定義與數學符號 . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
1.5
論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2

文獻探討
12
2.1
訊號處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2
獨立成份分析
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3
分類與預測 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4
實驗設計與分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3

基於幾何與調和平均不等式之創新獨立成份估測法 (GHMI-
ICA)
23
3.1
概念與架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2
統計獨立與平均不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1
機率密度函數性質與統計獨立定義 . . . . . . . . . . . . . . . . 24
3.2.2
平均不等式定義與性質 . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3
平均不等式與統計獨立結合 . . . . . . . . . . . . . . . . . . . 26
3.3
基於幾何與調和平均不等式的目標函數 . . . . . . . . . . . . . . . . . 26
3.4
創新獨立成份估測演算法 GHMI-ICA 的推導 . . . . . . . . . . . . . . 29
3.5
演算法之績效分析與比較 . . . . . . . . . . . . . . . . . . . . . . . . . 34

4

廔管裝設與血管狹窄之實證分析
46
4.1
血管音訊號取樣的 24因子實驗設計 . . . . . . . . . . . . . . . . . . . 46
4.2
訊號處理與因子設計分析 . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1
訊號處理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2
因子設計分析
. . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3
獨立成份估計與因子設計分析 . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1
獨立成份估計
. . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2
因子設計分析
. . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4
預測績效分析與比較 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5

結論與未來展望
70
參考文獻
73
A
使用的軟體工具
77
B
平均不等式證明
78
C
各獨立成份演算法的分群結果
80
D
GHMI(2) 對於廔管裝設的判別常數與係數
82
E
GHMI(2) 對於血管狹窄的判別常數與係數
85
F
TANH(2) 對於廔管裝設的判別常數與係數
88
G
TANH(2) 對於血管狹窄的判別常數與係數
91
R. A. Fisher (1936), The Use of Multiple Measurements in Taxonomic Problems,
Annals of Eugenics, Vol. 7, No. 7, pp. 179-188.
M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto and H. Ohno (2004), Combined
Multivariate Statistical Process Control, In proceedings of IFAC Symposium
on Advanced Control of Chemical Plants, ADCHEM 2004, pp. 303-308.
S. P. Huang, C. C. Chiu, D. F. Cook and C. J. Lu (2007), Process Disturbance
Identification Using ICA-Based Image Reconstruction Scheme with Neural
Network, IEEE International Conference on Industrial Engineering and En-
gineering Management, IEEM 2007, pp. 1103-1109.
T. T. Shannon and J. McNames (2007), ICA Based Disturbance Specific Control
Charts, In proceedings of the IEEE International Conference on Information
Reuse and Integration, IRI 2007, pp. 251-256.
A. Hyvärinen (1999a), Fast and Robust Fixed-Point Algorithms for Independent
Component Analysis. IEEE Transactions on Neural Networks, Vol. 10, No.
3, pp. 626-634.
D. T. Pham, P. Garrat and C. Jutten (1992), Separation of A Mixture of Inde-
pendent Sources Through A Maximum Likelihood Approach. In Proceedings
of EUSIPCO, pages 771-774.
A. Hyvärinen (1999b), Survey on Independent Component Analysis, Neural Com-
puting Surveys, Vol. 2, pp. 94-128.
H. H. Yang and S. I. Amari (1997), Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information,
Neural Computation, Vol. 9, pp. 1457-1482.
E. Miller and J. Fisher (2003), ICA Using Spacings Estimates of Entropy, In
processings of the Furth International Workshop on Independent Component
Analysis and Blind Signal Separation, ICA 2003, pp. 1271-1295.
K. Hild, D. Erdogmus and J. Principe (2001), Blind Source Separations Using
Renyi’s Mutual Information, IEEE Signal Processing Letters, Vol. 8, No. 6,
pp. 174-176.
N. Delfosse and P. Loubaton (1996), Adaptive Blind Separation of Independent
Sources: A Deflation Approach, Signal processing, Vol. 45, pp. 59-83.
S. Amari, A. Cichocki and H. Yang (1996), A New Learning Algorithm for Blind
Signal Separation, In Advances in Neural Information Processing Systems,
Vol.8, pp. 757-763.
J. F. Cardoso (1999), Higher-Order Contrasts for Independent Component Anal-
ysis, Neural Computation, Vol. 11, pp. 157-192.
C. Jutten and J. Herault (1991), Blind Separation of Sources, Part I: An Adaptive
Algorithm Based on Neuromimetic Architecture, Signal Processing, Vol. 24,
pp. 1-10.
R. Boscolo, H. Pan and V. P. Roychowdhury (2001), Non-Parametric ICA, In
Proceedings of the Third International Symposium on Independent Compo-
nent Analysis and Blind Signal Separation, ICA2001, pp. 13-18.
R. Boscolo, H. Pan and V. P. Roychowdhury (2004), Independent Component
Analysis Based on Non-Parametric Density Estimation, IEEE Transactions on Neural Networks, Vol. 15, No. 1, pp. 55-65.
USRDS (2013), 2012 USRDS Annual Data Report, United States Renal Data
System.
P. S. Bullen (2003), Handbook of Means and Their Inequalities, Springer Sci-
ence+Business Media, Berlin, New York. (2nd ed.)
G. H. Hardy, J. E. Littlewood and G. Polya (1952), Inequalities, Cambridge.
(2nd ed.)
B. Ans, J. Herault and C. Jutten (1985), Adaptive Neural Architectures: Detec-
tion of Primitives, In Proceedings of COGNITIVA’s 85, pp. 593-597.
Pierre Comon (1994), Independent Component Analysis, A New Concept?, Signal
Processing, Vol. 36, No. 3, pp. 287-314.
A. Hyvärinen, J. Karhunen and E. Oja (2001), Independent Component Analysis,
Wiley-Interscience. (1st ed.)
D. C. Montgomery (2005), Design and Analysis of Experiments, John Wiley and
Sons, New York. (6th ed.)
M. M. Mena and B. Mandersson (2011), Analysis of The Vascular Sounds of The
Arteriovenous Fistula’s Anastomosis, 33rd Annual International Conference
of the IEEE EMBS, pp. 3784-3787.
M. M. Mena, P. V. Obando, E. Mattsson and B. Mandersson (2010), Acousti-
cal Detection of Venous Stenosis in Hemodialysis Patients Using Principal
Component Analysis, 32nd Annual International Conference of the IEEE
EMBS, pp. 3654-3657.
P. V. Obando, M. M. Mena and B. Mandersson (2009), Arteriovenous Fistula Stenosis Detection Using Wavelets and Support Vector Machines, 31rd An-
nual International Conference of the IEEE EMBS, pp. 1298-1301.
M. M. Mena, P. V. Obando and B. Mandersson (2009), Characterisation of Arte-
riovenous Fistula’S Sound Recordings Using Principal Component Analysis,
31rd Annual International Conference of the IEEE EMBS, pp. 5661-5664.
R. A. Johnson and D. W. Wichern (1992), Applied Multivariate Statistical Anal-
ysis, Prentice-Hall International, UK. (3rd ed.)
J. M. Lee, C. Yoo and I. B. Lee (2004), Statistical Process Monitoring with
Independent Component Analysis, Journal of Process Control, Vol. 14, No.
5, pp. 467-485.
A. Hyvärinen and E. Oja (2000), Independent Component Analysis: Algorithms
and Applications, Neural Networks, Vol. 13, pp. 411-430.
桑慧敏 (2007), 機率與推論統計原理, McGraw-Hill International. (第一版)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *