帳號:guest(3.15.3.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張筌鈞
論文名稱(中文):無鉛無鹵素材料之板級可靠度分析研究
論文名稱(外文):The analysis of board-level reliability using Lead-free and Halogen-free materials
指導教授(中文):桑慧敏
口試委員(中文):汪上曉
徐文慶
陳俊宏
蘇英芳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系碩士在職專班
學號:100036510
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:56
中文關鍵詞:無鉛焊料無鹵阻燃劑板級可靠度板級掉落測試板級循環彎曲測試實驗設計變異數分析首要數值法則
相關次數:
  • 推薦推薦:0
  • 點閱點閱:639
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本研究是探討聯結 “封裝元件” 與 “電路板”之間的錫球焊點之可靠度,又名板級可靠度。近年來,環保意識高漲,導致無鉛焊料與無鹵電路板逐漸地取代有鉛焊料(又名錫鉛焊料)與有鹵電路板於電子產品上。相較於有鉛焊料與有鹵電路板,無鉛焊料與無鹵電路板較硬且脆。所以此二者經組裝後,錫球焊點在動態荷載下極易發生破裂,其板級可靠度值得探討。據我們所知目前並無文獻探討此二者組裝後的板級可靠度。
由於業界在錫球成份上均以導入無鉛製程,而電路板中的無鹵阻燃劑仍未完全導入。本研究將採用最常用的兩種無鉛錫球、有鹵與無鹵電路板、電路板中是否添加填充材料等三個材料因子去規劃實驗設計。以掉落衝擊與循環彎曲測試兩種方式去評估電路板受到動態彎曲之下板級可靠度。
在板級可靠度中所使用電子元件工程聯合協會(Joint Electron Device Engineering Council, JEDEC)所制定的JEDEC 22-B111規範中掉落衝擊標準板並不是完全對稱。業界常把板上九顆元件納入同一組後去分析樣品的板級可靠度,未將位置因素考慮進去。所以本研究將加入位置因素,探討其對板級可靠度的影響並與未考量位置時做一比較。比較後發現元件在電路板上位置是會影響掉落衝擊壽命。經由實驗設計分析研究結果後,建議採用標準實驗板中角落位置4顆元件去探討材料的影響,讓實驗成本低且更有效(去除位置的區集效應; Block Effect)。
Motivated by the environmental awareness, printed circuit board (PCB) with the lead free solder and halogen-free (named as PCBF) is gradually replacing the traditional PCB with (tin) lead solder and halogen PCB in most electronic products. PCBFs are harder and more brittle than traditional PCNs, and therefore the corresponding board-level is less reliable, where the board-level is defined to be the solder joint between the packaging components and PCB. There is no evidence in the literature of analyses of the board-level reliability for PCBF. This paper provides an assessment of the board-level reliability for PCBF.
In this study, drop impact and cyclic bend test are used to evaluate the board-level reliability of PCB under dynamic bending. Traditional experiments, designed by JEDEC22-B111 standard, suggest placing 9 packaging components in each testing board. Three factors considered are: (1) two kinds of lead free solder balls, (2) halogen and halogen-free PCB, and (3) PCB with or without filler.
Results show that location of each packaging component should be considered as the fourth factor since it influences the reliability for PCBF. To minimize the influence of the location factor, we suggest to place 4 packaging components into four corners in each testing board. The new experiment design is not only more effective, but also more economic compared with the traditional one.
第一章 緒論
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 研究方法 3
1-4 名詞解釋 3
第二章 理論基礎
2-1 無鉛與無鹵的介紹與趨勢 4
2-2 實驗設計法介紹 9
2-3 板級可靠度概念介紹 14
2-4 統計分析方法 16
第三章 實驗之建立與評估
3-1 實驗規劃 20
3-2 實驗試片介紹 24
3-3 上板製程 26
3-4 板級可靠度之掉落衝擊試驗 27
3-5 板級可靠度之循環彎曲試驗 30
第四章 實驗結果分析
4-1 掉落衝擊試驗結果分析 33
4-2 循環彎曲試驗結果分析 44
第五章 結論與建議
5-1 結果與討論 50
5-2 建議與未來研究方向 52
參考文獻 53
1. 李業松,“上板級封裝體之掉落及溫度循環疲勞實驗與分析”,國立中山大學機械與機電工程研究所碩士論文,民國九十六年。
2. 李芳儀,“銅含量對Sn-Ag-Cu無鉛銲錫震動破壞特性之效應”,國立成功大學材料科學與工程學系碩士論文,民國九十二年。
3. 何耀庭, “國際無鹵化要求相關法規對資訊電子產業之影響,” 拓墣產業研究所, 2 July, 2008.
4. 桑慧敏 著“機率與推論統計原理”,2008年12月。
5. 陳建銘,“無鉛錫球封裝晶片之掉落衝擊測試”,國立中山大學機械與機電工程研究所碩士論文,民國九十四年。
6. 張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,第12期,民國84年。
7. 蔡宗岳,“晶圓級構裝承受JEDEC上板級掉落衝擊測試之研究”, 國立成功大學工程科學系博士論文,民國九十七年。
8. 賴玄金,“從IPC Work‘99會議中看無鉛銲錫電子構裝之應用現況與發展趨勢”,工業材料,第158期,民國89年。
9. Chang-Lin Yeh,Chin-Li Kao,Yi-Shao Lai,”Reliability Prediction for Board-level Electronic Packages Subjected to Consecutive Drops”,Stress-Reliability Lab , Advanced Semiconductor Engineering ,Inc, IMAPS 2005.
10. C.M. Chung, T.S. Lui and L.H. Chen, “Effect of aluminum addition on tensile properties of naturally aging Sn-Zn eutectic solder”, J. Materials Science, 37(2002), 191-195.
11. Chang-Lin Yeh, Yi-Shao Lai, “Transient Analysis of Board-Leve l Drop Response of Lead-Free Chip-Scale Packages with Experimental Verifications,” Electronics Packaging Technology Conference, 2004.
12. Chang-Lin Yeh, Yi-Shao Lai, Chin-Li Kao, “Prediction of Board-Level Reliability of Chip-Scale Packages under Consecutive Drops,” Electronics Packaging Technology Conference, 2005.
13. D.S. Patterson, P. Elenius, and J.A. Leal, “Wafer bumping technologies-A comparative analysis of solder deposition process and assembly considerations”, Advances in Electronic Packaging-1997, Vol. 1, ASME(1997).
14. Directive 2005/84/EC, Official Journal of the European Union, 27 Dec. 2005.
15. Desmond Y.R. Chong*, H.J. Toh, B.K. Lim, Patrick T.H. Low, “ Drop Reliability Performance Assessment for PCB Assemblies of Chip Scale Packages (CSP) ”, 2005 Electronics Packaging Technology Conference
16. F.X. Che, H.L.J. Pang, W.H. Zhu and Anthony Y. S. Sun ,“Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints,” , 2006 Electronics Packaging Technology Conference.
17. Graver Chang ” Cyclic Bending Testing condition effect on the SnAgCu Solder Interconnects in CSP Package on Board” IMPACT Conference ,Oct. 2008.
18. Guide to greener electronics, Greenpeace, Version 10, Dec. 2008.
19. G. Reza, “Chip scale package issues”, Microelectronics and Reliability, Vol.40, Issues﹕7(July 2000).
20. IPC-T-50H CN ,“電⼦電路互連與封裝術語及定義”, 2008年7⽉。
21. IPC/JEDEC-9703, IPC Association Connecting Electronics Industries, “Mechanical Shock Test Guidelines for Solder Joint Reliability”, March 2009.
22. JESD22-B111, JEDEC Solid State Technology Association, “Board Level Drop Test Method of Components for Handheld Electronic Products”, July 2003.
23. JESD22-B110,JEDEC Solid State Technology Association, “Subassembly Mechanical Shock”, 2001.
24. JESD22B113, “Board level cyclic bend test method for interconnection reliability characterization of components for handheld electronic products,” JEDEC Solid State Technology Association, Mar. 2006.
25. Lai, Y.-S., P.-F. Yang and C.-L. Yeh, “Experimental studies of board-level reliability of chip-scale packages subjected to JEDEC drop test condition,” Microelectron Reliability., Vol. 46, No. 2-4, pp. 645-650 (2006).
26. M.N. Islam, Y.C. Chan, M.J. Rizvi, and W. Jillek, “Investigation of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder”, Journal of Alloys and Compounds, 400(2005) .
27. M. McCormack, S. Jin, H.S. Chen and D.A. Machusak, “New lead-free Sn-Zn-In solder alloys”, J. Elec. Master., 123(1994).
28. Mechanical Reliability, A. D. S. Carter, John Wiley & Sons, 2nd Edition, 1986, Chap. 2 and 11.
29. N.C. Lee, “Getting ready for lead free solders”, Surface Mount Technology, 26(1997).
30. Practical Reliability Engineering, P. D. T. O’Connor, John Wiley & Sons, 3rd Edition(1991), Chap. 1-6.
31. R. Abbaschian and Robert E. Reed-Hill, “Physical metallurgy principles 3rd edition”, PWS Publishing Company.
32. Reliability in Engineering Design, K. C. Sons, John Wiley & Sons, 1977, Chap. 1-6.
33. Reliability Analysis in Engineering Applications, S. H. Dai, and M. O. Wang, Van Nostrand Reinhold, 1992.
34. S.L. Allen, M.R. Notis, R.R. Chromik, and R.P. Vinci, “Mcrostructural evolution in lead-free solder alloys: Part Ⅱ. Directionally solidified Sn-Ag-Cu, Sn-Cu and Sn-Ag”, J. Materials Reserch, 19(2004).
35. S.L. Allen, M.R. Notis, R.R. Chromik and R.P. Vinci, “Mcrostructural evolution in lead-free solder alloys: PartⅠ. Cast Sn-Ag-Cu eutectic”, J. Materials Reserch, 19(2004).
36. Song, W.-M. T. and Schmeiser, B. (2009). Omitting Meaningless Digits in Point Estimates: the Probability Guarantee of Leading-Digit Rules, Operations Research, 57, 109 -- 117.
37. Song, W.-M. T., and Bruce Schmeiser (2011), The Leading-Digit Procedure and Format for Displaying Tables of Statistical Point Estimators. IIE Transaction}. DOI:10.1080/0740817X.2011.564601, Available online: 07 Mar 2011 (SCI).
38. Tee, T. Y., Luan, J. E., “Novel board level drop test simulation using implicit transient analysis with Input-G method,” Proc. 6th Electr. Pack. Technol. Conf.,Singapore, (2004).
39. X. Deng, N. Chawla, K.K. Chawla and M. Koopman, “Deformation behavior of (Cu,Ag)-Sn intermetallics by nanoindetation”, Acta. Materialia, 52(2004).
40. Yeh, C. L., Lai, Y. S., “Support excitation scheme for transient analysis of JEDEC board level drop test,” Microelectron Reliability 2006
41. Yeh, C. L., Lai, Y. S., Kao, C. L., “Evaluation of Board-Level reliability of electronic packages under consecutive drops,” Microelectron Reliab 2006:46(2-4),pp. 1172-1182.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *