帳號:guest(52.15.86.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許又仁
作者(外文):Hsu, You Ren
論文名稱(中文):奈米柱誘導式生成樹枝狀碎形結構之製程方法與數值模擬之研究
論文名稱(外文):Investigation of Dendritic Patterns Formation through Nanopost-Guided Organization: Experiment, and Numerical Simulation
指導教授(中文):陳致真
指導教授(外文):Chen, Chih-Chen
口試委員(中文):傅建中
鄭兆珉
鄭榮偉
游佳欣
口試委員(外文):Fu, Chien-Chung
Cheng, Chao-Min
Cheng, Jung-Wei
Yu, Jia-Shing
學位類別:博士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:100035812
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:58
中文關鍵詞:樹枝狀結構奈米柱陣列
外文關鍵詞:Dendritic PatternsNanopost
相關次數:
  • 推薦推薦:0
  • 點閱點閱:327
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本文的研究內容可以分為兩個部分。這一個部份我們透過實驗的方法發展出一個有效率製作樹枝狀結構的方法。我們發現奈米柱陣列的結構安排可以形成一個被動式的元件,讓樹枝狀結構的分枝自主裝的過程中產生改變。一般而言製造奈米結構的製作有相當的難度,都需要昂貴的設備。在我們的系統中,我們發現奈米柱的結構安排可以影響一個微米級樹枝狀結構的分支角度分布,且在一個很短的時間就可以完成生成。在材料的選擇上,因無機鹽類低成本,容易取得,因而成為我們實驗製程上的材料選擇。
第二個部分我們透過數值模擬的方法,探討奈米柱在樹枝狀結構,於自組裝生成過程扮演的腳色。在製造策略上,大致可以分為被動式以及主動式誘導的策略。我們透過數值模擬的方法,呈現兩種策略對應在奈米柱陣列的設計方法,並呈現相關的結果進行討論,希望可以在工程上產生基礎,突破既有的自組裝結構生成的策略,提供另一個誘導結構生成的方法。
This thesis can be concluded in two parts. In the first part, we use experiments to

explore how to use an efficient way to fabricate dendritic structure. In this article, we

found through nanopost arrays arrangement can develop a passive component to

induce the branching distribution of self-organization dendritic inorganic salt

structures. It needs expensive equipment to work on these nanostructures related

topics because fabrication process is difficult. We found the structure arrangement in

nanopost array can affect the branching angle distribution in micro-scale dendritic

structure and in a very short time without complicated environment control. In our

experiment, we chose inorganic salt to create the DP because inorganic salt is

low-cost, and easy to be obtained.

The second part of this thesis, we use an independent numerical simulation

research to study how to use precursor passive geometric structure or active induction

to affect the formation process of dendritic structure. Microstructure formation can be

mainly categorized in two ways: (1) active: such as using electric field to control the

arrangement of molecules (using external force to change the morphology of

molecules or material; (2) passive: material structure forms through pre-designed

components. On the issue of engineering, the most difficult part of self-organization

structure in fabrication is there are only limited strategies can be utilized in the

fabrication control.We hope we can propose another strategy to modify this process through appropriate artificial disturbance
Chapter 1. Introduction ............................................................................................3

Chapter 2. Background Review: Nano-fabrication Technology, and Formation of

Dendritic Pattern Self-organization ..................................................................................7

Chapter 3. Experiment: Generating Dendritic Pattern through Nanoposts –

Guided Crystallization ....................................................................................................13

Chapter 4. Improvement of DP Fabrication, and Transferring Pattern using

PDMS......................................................................................................................................21

Chapter 5. Numerical Simulation: Two-dimensional Phase Field Model..............25

Chapter 6. Environmental Setting of Simulation.........................................................33

Chapter 7. Arrangment of Nanopost Arrays for Simulation ....................................36

Chapter 8. Boundary Condition and Mesh ...................................................................41

Chapter 9. Simulation Results and discussions............................................................43

Chapter 10. DP Growth Under Passive Design and Active Nanopost Heating.....49

Chapter 11. Conclusions.....................................................................................................53

References ...........................................................................................................................55

LIST OF FIGURES

Figure 1 The fabrication procedure of nanoposts and salt crystallization patterns..................17

Figure 2 Dendritic inorganic salt crystallization patterns formed on Au-deposited

substrates with nanoposts. ....................................................................................18

Figure 3 Inorganic salt crystallization dendritic patterns (DP) formed on Au-deposited

nanopost substrates created by two sequential LIL exposures with the rotation

angle

r

. ...............................................................................................................19

Figure 4 Branch angle distributions of salt crystallization on nanopost substrates. ................19

Figure 5 The SEM analysis of dendritic structure ...................................................................20

Figure 6 Images of DPs made from PBS buffer, and NaCl solution. ....................................23

2

Figure 7 Images of DPs made from PBS buffer using spin-dry method. ..............................24

Figure 8 Schematic diagrams of soft-lithograph we used for transferring the pattern to a

polydimethylsiloxane (PDMS) surface. ...................................................................24

Figure 9 The phase field and corresponding temperature field of the dendritic structure at

interface thickness W0 = 0.25 on the surface without nanoposts. ....................34

Figure 10 Dendritic structure at different interface width. .............................................35

Figure 11 Analogy for exposure angle 90 circle arrays. .................................................38

Figure 12 Analogy for exposure angle 28 elliptical arrays. ............................................39

Figure 13 Analogy for exposure angle 38 elliptical arrays...............................................40

Figure 14 The computational domain boundary condition .............................................41

Figure 15 The phase field and corresponding temperature field of dendritic structure on the

surface with circular nanoposts in 0-25sec. ..........................................................46

Figure 16 The dendritic structure area- expanding speed on the surface with different density.

................................................................................................................................46

Figure 17 The dendritic structure at circle, ellipse 28, and ellipse 38 at the condition of

high density. .........................................................................................................47

Figure 18 The dendritic structures with two initial starting points at the surface without

nanopost and with 3 different kinds nanopost. .....................................................47

Figure 19 Two initial nucleation points on the surface. ..................................................48

Figure 20 The phase contour in three different nanopost arrays at density condition 2

when negative heat flux is introduced to the nanopost at t=60s. ...................50

Figure 21 The ability of delaying dendritic structure expanding at 3 kinds of nanopost

surface is different..............................................................................................51

Figure 22 When a negative heat flux introduced at the specific nanopost structure, it

can induce the Chinese character formed at the area with lower

temperature. ......................................................................................................52

LIST OF TABLES

Table. 1 The number of circular and elliptical nanoposts in a free space within a fixed

outside boundary. ...................................................................................................31

Table.2 The ratio of W0 and gap at W0 = 0.25 for three different nanoposts. ...31

Table. 3 Setting of the mesh ..................................................................................................36
1. Kurland, N.E., et al., Self-assembly mechanisms of silk protein nanostructures

on two-dimensional surfaces. Soft Matter, 2012. 8(18): p. 4952-4959.

2. Hazar, M., et al., Modulating material interfaces through biologically-inspired

intermediates. Applied Physics Letters, 2011. 99(23): p. -.

3. Darwich, S., K. Mougin, and H. Haidara, From highly ramified, large scale

dendrite patterns of drying "alginate/Au NPs" solutions to capillary

fabrication of lab-scale composite hydrogel microfibers. Soft Matter, 2012.

8(4): p. 1155-1162.

4. Imai, H., Self-Organized Formation of Hierarchical Structures, in

Biomineralization I, K. Naka, Editor. 2007, Springer Berlin Heidelberg. p.

43-72.

5. Noorduin, W.L., et al., Rationally Designed Complex, Hierarchical

Microarchitectures. Science, 2013. 340(6134): p. 832-837.

6. Mhíocháin, T.R.N. and J.M.D. Coey, Chirality of electrodeposits grown in a

magnetic field. Physical Review E, 2004. 69(6): p. 061404.

7. Ma, Y.R., et al., Hierarchical, star-shaped PbS crystals formed by a simple

solution route. Crystal Growth & Design, 2004. 4(2): p. 351-354.

8. Chen, X.Y., et al., Hierarchical growth and shape evolution of HgS dendrites.

Crystal Growth & Design, 2005. 5(1): p. 347-350.

9. Cao, M.H., et al., Single-crystal dendritic micro-pines of magnetic

alpha-Fe2O3: Large-scale synthesis, formation mechanism, and properties.

Angewandte Chemie-International Edition, 2005. 44(27): p. 4197-4201.

10. Kniep, R. and S. Busch, Biomimetic growth and self-assembly of fluorapatite

aggregates by diffusion into denatured collagen matrices. Angewandte

Chemie-International Edition in English, 1996. 35(22): p. 2624-2626.

11. Busch, S., U. Schwarz, and R. Kniep, Morphogenesis and structure of human

teeth in relation to biomimetically grown fluorapatite-gelatine composites.

Chemistry of Materials, 2001. 13(10): p. 3260-3271.

12. Busch, S., U. Schwarz, and R. Kniep, Chemical and structural investigations

of biomimetically grown fluorapatite-gelatin composite aggregates. Advanced

Functional Materials, 2003. 13(3): p. 189-198.

13. Yu, S.H., et al., Biomimetic crystallization of calcium carbonate spherules

with controlled surface structures and sizes by double-hydrophilic block

copolymers. Advanced Functional Materials, 2002. 12(8): p. 541-545.

56

14. Yu, S.H., et al., Growth and self-assembly of BaCrO4 and BaSO4 nanofibers

toward hierarchical and repetitive superstructures by polymer-controlled

mineralization reactions. Nano Letters, 2003. 3(3): p. 379-382.

15. Imai, H., T. Terada, and S. Yamabi, Self-organized formation of a hierarchical

self-similar structure with calcium carbonate. Chemical Communications,

2003(4): p. 484-485.

16. Imai, H., et al., Formation of calcium phosphate having a hierarchically

laminated architecture through periodic precipitation in organic gel.

Chemical Communications, 2003(15): p. 1952-1953.

17. Terada, T., S. Yamabi, and H. Imai, Formation process of sheets and helical

forms consisting of strontium carbonate fibrous crystals with silicate. Journal

of Crystal Growth, 2003. 253(1-4): p. 435-444.

18. Imai, H., et al., Self-organized formation of porous aragonite with silicate.

Journal of Crystal Growth, 2002. 244(2): p. 200-205.

19. Fukuyo, T. and H. Imai, Morphological evolution of silver crystals produced

by reduction with ascorbic acid. Journal of Crystal Growth, 2002. 241(1-2): p.

193-199.

20. García-Ruiz, J.M., E. Melero-García, and S.T. Hyde, Morphogenesis of

Self-Assembled Nanocrystalline Materials of Barium Carbonate and Silica.

Science, 2009. 323(5912): p. 362-365.

21. García-Ruiz, J.M., et al., Self-Assembled Silica-Carbonate Structures and

Detection of Ancient Microfossils. Science, 2003. 302(5648): p. 1194-1197.

22. Zuppiroli, L., et al., Self-assembled monolayers as interfaces for organic

opto-electronic devices. European Physical Journal B, 1999. 11(3): p.

505-512.

23. Zhu, J., J. Ni, and A.J. Shih, Robust Machine Tool Thermal Error Modeling

Through Thermal Mode Concept. Journal of Manufacturing Science and

Engineering-Transactions of the Asme, 2008. 130(6).

24. Ming, N.B., M. Wang, and R.W. Peng, NUCLEATION-LIMITED

AGGREGATION IN FRACTAL GROWTH. Physical Review E, 1993. 48(1): p.

621-624.

25. Meredith, D., Practice tool condition monitoring. Manufacture Engineering

1988. 120(1): p. 34-39.

26. Debeljak, M. and S. Dzeroski, Decision Trees in Scological Modelling in

Modelling Complex Ecological Dynamics. 2001, Berlin Heidelberg: Springer.

27. Cheng, C.-M. and P.R. LeDuc, Creating Ordered Small-Scale

Biologically-Based Rods through Force-Controlled Stamping. Journal of the

American Chemical Society, 2007. 129(31): p. 9546-9547.

57

28. Bogwe, R., Self-assembly: a review of recent developments. Assembly

Automation, 2008. 28(3): p. 211-215.

29. Altintas, Y., Research on Metal Cutting, Machine Tool Vibrations and

Control. Journal of the Japan Society for Precision Engineering, 2011. 77(5): p.

470-471.

30. Kim, T., et al., Large-Scale Graphene Micropatterns via

Self-Assembly-Mediated Process for Flexible Device Application. Nano

Letters, 2012. 12(2): p. 743-748.

31. Parviz, B.A., D. Ryan, and G.M. Whitesides, Using self-assembly for the

fabrication of nano-scale electronic and photonic devices. Ieee Transactions

on Advanced Packaging, 2003. 26(3): p. 233-241.

32. Morris, C.J., S.A. Stauth, and B.A. Parviz, Self-assembly for microscale and

nanoscale packaging: Steps toward self-packaging. Ieee Transactions on

Advanced Packaging, 2005. 28(4): p. 600-611.

33. Ruiz-Carretero, A., et al., Stepwise self-assembly to improve solar cell

morphology. Journal of Materials Chemistry A, 2013. 1(38): p. 11674-11681.

34. Macaraig, L., T. Sagaw, and S. Yoshikawa, Self-Assembly Monolayer

Molecules for the Improvement of the Anodic Interface in Bulk Heterojunction

Solar Cells. Energy Procedia, 2011. 9(0): p. 283-291.

35. Kennedy, R.D., et al., Self-Assembling Fullerenes for Improved

Bulk-Heterojunction Photovoltaic Devices. Journal of the American Chemical

Society, 2008. 130(51): p. 17290-+.

36. Dang, X.N., et al., Virus-templated self-assembled single-walled carbon

nanotubes for highly efficient electron collection in photovoltaic devices.

Nature Nanotechnology, 2011. 6(6): p. 377-384.

37. Moons, E., Conjugated polymer blends: linking film morphology to

performance of light emitting diodes and photodiodes. Journal of

Physics-Condensed Matter, 2002. 14(47): p. 12235-12260.

38. Mu, W. and N.B. Ming, INSITU OBSERVATION OF

SURFACE-TENSION-INDUCED OSCILLATION OF AQUEOUS-SOLUTION

FILMS IN NEEDLE-LIKE CRYSTAL-GROWTH. Physical Review A, 1991.

44(12): p. R7898-R7901.

39. Sun, Y.L., et al., Lloyd's mirror interferometer using a single-mode fiber

spatial filter. Journal of Vacuum Science & Technology B, 2013. 31(2).

40. Su, H.-W., M.-S. Ho, and C.-M. Cheng, Probing characteristics of collagen

molecules on various surfaces via atomic force microscopy. Applied Physics

Letters, 2012. 100(23): p. -.

58

41. Smith, H.I., Low cost nanolithography with nanoaccuracy. Physica E, 2001.

11(2-3): p. 104-109.

42. Chang, E.C., et al., Improving feature size uniformity from interference

lithography systems with non-uniform intensity profiles. Nanotechnology,

2013. 24(45).

43. Kobayashi, R., Modeling and numerical simulations of dendritic crystal

growth. Physica D: Nonlinear Phenomena, 1993. 63(3–4): p. 410-423.

44. Karma, A. and W.-J. Rappel, Quantitative phase-field modeling of dendritic

growth in two and three dimensions. Physical Review E, 1998. 57(4): p.

4323-4349.

45. Chang, E.C., et al., Nanopost-Guided Self-Organization of Dendritic

Inorganic Salt Structures. Langmuir, 2014. 30(36): p. 10940-10949.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *